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Abstract

Background: Tospovirus is a plant-infecting genus within the family Bunyaviridae, which also includes four animal-
infecting genera: Hantavirus, Nairovirus, Phlebovirus and Orthobunyavirus. Compared to these members, the structures
of Tospovirus proteins still are poorly understood. Despite multiple studies have attempted to identify candidate N
protein regions involved in RNA binding and protein multimerization for tospovirus using yeast two-hybrid systems
(Y2HS) and site-directed mutagenesis, the tospovirus ribonucleocapsids (RNPs) remains largely uncharacterized at the
molecular level and the lack of structural information prevents detailed insight into these interactions.

Results: Here we used the nucleoprotein structure of LACV (La Crosse virus-Orthobunyavirus) and molecular dynamics
simulations to access the structure and dynamics of the nucleoprotein from tospovirus GRSV (Groundnut ringspot virus).
The resulting model is a monomer composed by a flexible N-terminal and C-terminal arms and a globular domain
with a positively charged groove in which RNA is deeply encompassed. This model allowed identifying the candidate
amino acids residues involved in RNA interaction and N-N multimerization. Moreover, most residues predicted to be
involved in these interactions are highly conserved among tospoviruses.

Conclusions: Crucially, the interaction model proposed here for GRSV N is further corroborated by the all available
mutational studies on TSWV (Tomato spotted wilt virus) N, so far. Our data will help designing further and more
accurate mutational and functional studies of tospovirus N proteins. In addition, the proposed model may shed light
on the mechanisms of RNP shaping and could allow the identification of essential amino acid residues as potential
targets for tospovirus control strategies.
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Background
Tospovirus is a thrips-borne plant-infecting genus within
the family Bunyaviridae, which also includes four animal-
infecting genera: Hanta/Nairo/Phlebo- and Orthobunya-
virus [1]. GRSV (Groundnut ringspot virus) is an emerging
tospovirus, that has caused severe diseases in distinct
vegetable crops in South America and is phylogenetically

close to the tospovirus type-species TSWV (Tomato spot-
ted wilt virus) [2]. Like all tospoviruses, GRSV contain a
trisegmented negative single-stranded RNA (ssRNA)
genome that encodes the viral RNA-dependent RNA
polymerase (RdRp), two glycoproteins (Gn/Gc), the move-
ment protein (NSm), the RNA silencing suppressor
protein (NSs) and the nucleoprotein (N) [3]. N is a multi-
functional protein involved in RNA protection, particle
assembly, intracellular movement and might play a role in
transcription/replication regulation [4–14]. Multiple cop-
ies of the N protein form oligomers that interact with the
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viral RNAs to build ribonucleoprotein complexes (RNPs)
that are proposed to be transported via plasmodesmata
and are functional templates for RNA replication and
transcription [6, 15, 16].
Multiple studies have attempted to identify candidate

N protein regions involved in RNA binding and protein
multimerization for TSWV using yeast two-hybrid sys-
tems (Y2HS) and site-directed mutagenesis [4, 6, 17, 18],
but the tospovirus RNPs remains largely uncharacterized
at the molecular level and the lack of structural informa-
tion prevents detailed insight into these interactions.
The lack of a reverse genetics system, which is available
for other bunyaviruses, has hampered tospovirus re-
search. The N protein crystal structures of related RNA
virus families (Arena/Orthomyxo/Bunyaviridae) have
been elucidated [8, 19–26] and despite different size and
distinct N-folding structures, there are common features
and architectural principles by which these proteins
form N-N multimers and N-RNA complexes [27].
Therefore, these available structures were used to predict
a three-dimensional model for GRSV N (the most

important and prevalent tospovirus in Brazil) using
homology modeling.

Results and discussion
Three-dimensional model of GRSV N and oligomerization
The GRSV N and LACV N have similar protein fold with
the predicted GRSV N monomer forming thirteen helical
segments and two small beta-sheets (Figs. 1, 2a and e-f).
The protein has a globular core domain (26–223 aa)
containing a deep positively charged groove with the two
chain terminals forming an N-terminus arm (1–25 aa)
and a C-terminus arm (224–258 aa) (Fig. 2a-b and Fig. 3).
The N- and C-arms extend outwards from the globular
core domain and interacts with the globular core domain
of neighboring monomers to mediate the multimerization,
supporting the “head-to-tail” model proposed by [18].
Amino acids S2-V12 of the N-arm interact with the Q61-
N82 of the core domain of one neighboring monomer
(Fig. 2c and e) while K227-K249 of the C-arm interact
with the K173–K198 of the core domain the other neigh-
boring monomer (Fig. 2d and f). Specific residue-residue

Fig. 1 Groundnut ringspot virus (GRSV) and La crosse virus (LACV) Nucleoproteins sequence alignment. Key residues for GRSV N and LACV N
oligomerization and for ssRNA binding are colored as indicated by the colored bars. The secondary structure of LACV N is shown above, and
every 10 residues are indicated with a dot (.). Strictly conserved residues are highlighted in red with white letter and highly conserved residues
are displayed by red letters. GRSV N GenBank accession number is AF251271 and LACV N UniProt accession code is P04873
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interactions have been listed in Table 1 for the two inde-
pendent interfaces. According to PISA, the intermolecular
interactions were mainly hydrogen bonds, but van der
Waals and hydrophobic interactions also contribute to
hold the monomers together (data not shown). This inter-
action model is further corroborated by the available
mutational studies on TSWV N [4, 17, 18].
Actually, the first assay to map functional domains of

TSWV N, performing Y2HS and random serial deletions,
showed that both the N- (1–39 aa) and C-terminals (233–
248 aa) were important for N-N interaction [18], in clear
agreement with the structural results presented here.

Furthermore, [17] identified three crucial intermonomer
binding regions: 42–56, 132–152 and 222–248 which have
a clear correspondence with the predicted interaction resi-
dues of GRSV N located at N- and C-arms, or buried in
the core of the model (Fig. 3). Moreover, amino acids resi-
dues located at the regions K103-A119 and L132-V135
are solvent accessible and therefore are able to inter-
act with NSm, glycoproteins, viral polymerase or host
proteins [6, 7]. Recently, studies have been performed
attempting to identify N-NSm interactions [28, 29]
which results are in perfect congruence with the
GRSV N protein model. In both cases, the model

Fig. 2 Monomeric and tetrameric structure of the Groundnut ringspot virus (GRSV) nucleoprotein (N). a Cartoon representation of monomeric
GRSV N with rainbow coloring from N- (blue) to C-terminus (red). b Electrostatic surface of the GRSV N with a positively charged groove in
complex with RNA shown as yellow (carbons) and red (oxygens) sticks. Positive and negative charges are blue and red, respectively. c N-terminus
interaction surface representation of four GRSV N monomers A, B, C, D shown in color pink, yellow, cyan and green, respectively. d C-terminus
interaction surface representation of the GRSV N tetrameric ring. The RNA is shown in black sticks deeply bound inside the tetrameric ring.
e Cartoon representation with the N-arm oligomerization interface showing interacting residues. The N-terminal arm is in pink and the globular
region is in green. The intermolecular hydrogen bonds are shown as yellow dotted lines. f 180° rotation of Fig. 2e, C-arm oligomerization interface
showing interacting residues. The C-terminal arm is in cyan and the globular region is in green
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proposed here represents an efficient tool to assist in
planning experiments with mutations and deletion in
the N protein.
In addition, the obtained model for N protein was

submitted to molecular dynamics simulations in order
to both refine the structure in aqueous solvent [30, 31]
and access the protein conformational ensemble, further

exploring its structural and functional roles. During the
simulation time, the globular core domain did not reveal
any loss of secondary structure, increase of radius of
gyration or persistent increments on RMSD values,
which supports the model quality. It is worthy to men-
tion that RMSF calculations indicate the N-terminal arm
(1–25 aa) as a very flexible region (Fig. 4c).

RNA interaction
According to the GRSV N protein model, the RNA is
primarily bound at the central RNA-binding groove
(Fig. 2b), and the key residues for this interaction (K3,
K5, Q17, K58, R60, Q61, R94, R95, K183, Y184, K187,
K192 and K227) are mainly located in this positively
charged groove. This positively charged groove is only
possible because residues F37, F56, F72, F74, I79, M91,
F93 and L96 form a hydrophobic core, which is indis-
pensable to stabilize the protein folding and to correctly
orient the RNA interacting residues towards the groove.
Importantly, these residues are highly conserved among
all tospoviruses (Fig. 3). Note that the N-terminal arm
is also involved in RNA binding and shielding RNA
from the solvent (Fig. 2c-d). Residues F23, L54, F56,
L57 and F93 were observed to modulate the RNA
nucleobases dynamics during the performed simulation,

Fig. 3 Sequence alignment of representative tospoviruses Nucleoproteins (N). The secondary structure of Groundnut ringspot virus (GRSV) is
shown above and of La crosse virus (LACV) is shown at the bottom. Key residues for GRSV N ssRNA binding are marked with yellow triangles.
GRSV N- and C-arms are marked with blue and green boxes respectively, with key residues for oligomerization highlighted. Strictly conserved
residues are highlighted in red with white letter and highly conserved residues with red letter. I: Tospovirus American clade I; II: Tospovirus
American clade II; III: Tospovirus Eurasian clade; IV: Orthobunyavirus. The sequence codes are supplied at the Additional file 2: Table S1

Table 1 Pairs of interacting residues for GRSV N-N oligomerization

N-arma N-arm binding siteb C-armc C-arm binding siteb

S2d S83 A226 K183

V4 N82 S229 K183

T7 Q61 D233 T186

T7 S62 Y235 K183

K8 S62 N238 K198

N10 T73 Y243 N185

V12 T73 V246 K175

V12 G75 V248 K173

K249 Y174
aN-arm amino acids residues of GRSV N
bInteracting amino acids residues of GRSV N globular core domain
cC-arm amino acids residues of GRSV N
dAmino acids residues position in the GRSV N sequence
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while the N-terminal arm seems to play a stabilization
role during MD simulations of GRSV N protein (Fig. 4a
and b). In addition, the content of alpha-helices in
GRSV N protein bound to RNA increased 25 % during
the simulation in comparison to the free monomer
(Fig. 4d), suggesting that, in the simulated timescale,
the monomeric state does not present a lack of con-
formational stability in detriment of oligomeric states,
as observed experimentally for other viruses [32, 33].
Recently, the residues R60, R94, and R95 were con-

firmed to interact with RNA [33], which also supports
our results. RNA is strongly bent at each N-N interface
and is largely solvent-inaccessible in the tetramer
(Fig. 2d). The dimensions of the groove can accommo-
date ssRNA and PISA analysis showed that the major-
ity of residue-nucleotide interactions occur with the
ribose and the phosphate moieties, suggesting a non-
sequence-specific RNA interaction. Indeed, Richmond
et al. [4] carried out mutagenesis and gel shift assay

studies to identify N regions important for ssRNA
binding and demonstrated that the N-RNA complex is
highly stable and non-sequence-specific, further sup-
porting these results.

Conclusions
Taken together, these data will help designing further
and more accurate mutational and functional studies
of tospovirus N proteins. In addition, the proposed
model may shed light on the mechanisms of RNP
shaping and could allow the identification of essential
amino acid residues as potential targets for tospovirus
control strategies.

Methods
In silico homology modeling and model optimization
A template for modeling the GRSV N protein was
searched in expasy SWISS-MODEL server [34] using
the amino acid sequence of GRSV N as a reference.

Fig. 4 Molecular Dynamics of monomeric Nucleoprotein (N) of Groundnut ringspot virus (GRSV). Root Mean Square Deviation (RMSD) calculations for
different set of atoms in both presence a and absence b of RNA. c Root Mean Square Fluctuations (RMSF) calculations for the entire N protein in both
presence (red) and absence (black) of RNA. d Plot of α-helix content as function of time in both presence (red) and absence (black) of RNA
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Template crystal structures of Orthobunyavirus genus
were chosen due to their genetic relationship. The
LACV (La Crosse virus-Orthobunyavirus) N tetrameric
crystal structure in complex with ssRNA (PDB ID
4BHH) was selected as the template [20], aligned with
GRSV N using T-Coffee server [35] and the resulting
alignment was manually improved using BioEdit [36].
Aligned sequences were used with MODELLERv9.10
[37] to develop high quality tetrameric models along
with or without RNA.
Optimization of the models was achieved using en-

ergy minimization protocols available at Yasara [38]
and Chiron [39] servers. Quality of the 3D models were
evaluated with ERRAT (version 2.0) [40] and MOL
probity [41]. Ramachandran plots for the models were
assessed and Ramachandran outlier residues were fixed
with COOT [42] and energy minimization. The highest
quality model with 90.1 % residues in favored region
and 8.4 % in allowed region while 1.5 % outlier at
Ramachandran plot was selected after visual inspection
(see Additional file 1: Figure S1). The model was sub-
jected to the PISA program [43] for interface analysis at
EBI-EMBL server and the retrieved PISA data was
analyzed for binding patterns using PyMOL [44].

Molecular dynamics
Molecular dynamics techniques were applied using
GROMACS suite [45] in order to evaluate the stability
and consistency of the obtained N protein monomeric
model and investigate GRSV N protein-RNA interac-
tions over time. Therefore, N protein model was simu-
lated in the presence and absence of the modeled RNA,
in two analytical systems. Amber99SB-ILDN force field
[46] was used to generate proper topologies. The
models were placed at the center of a dodecahedral box
and solvated with TIP3P water model [47]. Counterions
were used to neutralize the net charge of the system,
and 0.15 M of NaCl was added to the box in order to
simulate cellular ionic environment.
After a minimization protocol using steepest descent

and conjugate gradient to eliminate possible clashes
and bad contacts, NVT ensemble with restraint forces
of 1000 kJ/mol was carried for 4 ns at 300 K. Moreover,
five subsequent equilibration steps in NPT ensemble
were carried out at 1 bar with restraint forces of
800 kJ/mol on heavy atoms, 600 Kcal/(mol x nm) and
400 kJ/mol on mainchain, 200 kJ/mol on backbone and
100 kJ/mol on alpha-carbons, totalizing 13 ns. Finally,
production runs with no restraints were carried for
50 ns using an integration step of 2 fs and LINCS
algorithm [48]. Also, Particle Mesh Ewald method [49]
was applied for Coulombic and Lennard-Jones interac-
tions longer than 1 nm.

Additional files

Additional file 1: Ramachandran plot analysis of predicted structure of
Groundnut ringspot virus (GRSV) N protein. The regions covered by light
blue lines show most favored regions, while the regions covered by dark
blue lines show allowed regions. Other regions of the plot show the
disallowed region. The pink dots show the outliers (PNG 87 kb)

Additional file 2: The Genbank acession numbers of the viruses used at
this work (TABLEDOCX 19 kb)
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