

Universidade de Brasília - UnB FAU – Faculdade de Arquitetura e Urbanismo PPG/FAU - Programa de Pós-Graduação Doutorado em Arquitetura e Urbanismo

TESE DE DOUTORADO

EU VOU, EU VOU, PARA ESCOLA A PÉ EU VOU... FORMA URBANA E DESLOCAMENTO DAS CRIANÇAS ATÉ A ESCOLA NA CIDADE DE GOIÂNIA

LUCIANA ARAUJO AZEVÊDO

ORIENTADOR: PROF. DR. MÁRCIO AUGUSTO ROMA BUZAR

Brasília, Dezembro 2016

LUCIANA ARAUJO AZEVÊDO

EU VOU, EU VOU, PARA ESCOLA A PÉ EU VOU... FORMA URBANA E DESLOCAMENTO DAS CRIANÇAS ATÉ A ESCOLA NA CIDADE DE GOIÂNIA

Tese de Doutorado apresentada como requisito obrigatório para obtenção do grau de Doutor pelo Programa de Pesquisa e Pós-Graduação em Arquitetura e Urbanismo da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília.

Área de Concentração: Tecnologia, Ambiente e Sustentabilidade. **Orientador**: Prof. Dr. Márcio Augusto Roma Buzar. Brasília / DF, Dezembro de 2016

Ficha catalográfica elaborada automaticamente, com os dados fornecidos pelo(a) autor(a)

Azevedo, Luciana Araujo

Eu vou, eu vou, para escola a pé eu vou... Forma

e urbana e deslocamento das crianças até a escola na
cidade de Goiânia / Luciana Araujo Azevedo;
orientador Marcio Agusto Roma Buzar. -- Brasília,
2016.
230 p.

Tese (Doutorado - Doutorado em Arquitetura e Urbanismo) -- Universidade de Brasília, 2016.

1. Forma Urbana. 2. Viagens Escolares. 3. Deslocamentos não-motorizados. 4. Análise comportamental. 5. Modelo logit multinomial. I. Roma Buzar, Marcio Agusto, orient. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

AZEVÊDO, L. A. (2016) – Eu Vou, Eu Vou, Para a escola a Pé Eu Vou... Forma Urbana e Deslocamento das Crianças até a Escola na Cidade de Goiânia. Tese de Doutorado em Arquitetura e Urbanismo. Programa de Pós-Graduação da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília, Brasília, DF, 230 p.

Brasília, 16 de Dezembro de 2016 Tese de Doutorado defendida no Programa de Pós-Graduação da Faculdade de Arquitetura e Urbanismo da Universidade de Brasília e aprovada pela Banca Examinadora constituída pelos membros: Orientador Prof. Dr. Márcio Augusto Roma Buzar Departamento de Tecnologia da Arquitetura e Urbanismo Faculdade de Arquitetura e Urbanismo FAU-UnB Examinador Interno Prof. Dr. Benny Scharsberg Departamento de Tecnologia da Arquitetura e Urbanismo Faculdade de Arquitetura e Urbanismo FAU-UnB Examinadora Interna Profa. Dra. Vanda Alice Garcia Zanoni Departamento de Tecnologia da Arquitetura e Urbanismo Faculdade de Arquitetura e Urbanismo FAU-UnB Examinadora Externa Profa. Dra. Denise Aparecida Ribeiro Departamento de Transportes - Campus Goiânia Instituto Federal de Educação - Goiás Examinadora Externa Profa. Dra. Caroline Duarte Alves Gentil

Departamento de Transportes – campus Jataí

Instituto Federal de Educação - Goiás

Agradecimentos

A Deus por realizar coisas grande em minha vida!!! Senhor não sou digna que entreis em minha morada, mas dizei uma só palavra e serei salva!

À minha mãe, que sempre me incentivou e lutou por mim por toda minha vida. Palavras são poucas para agradecer por tudo, pois tudo devo a senhora.

Aos meu irmãos, meus companheiros e meus primeiros amigos. Obrigada Marco Aurélio, Ana Lucia, Temistocles.

Aos meus filhos, Rayana e Daniel – Amo muito, de todo meu coração e alma. Melhor parte de mim.

Ao meu marido, companheiro de todas as horas. Obrigada por tudo, sem você não teria chegado aqui, não teria conseguido. Amor que não se mede...

Ao meu orientador Marcio Buzar, pelo auxílio e orientação.

Aos meus amigos do IFG, pela força, amizade e carinho.

Aos amigos da FAU, Vanda, Betânia, Aline, estarão sempre comigo...

Aos meus amigos do condomínio, obrigada pela compreensão das ausências...

A toda minha família, tios, primos, afilhados, compadres, amo cada um de vocês.

Ao meu querido padre João (*in memorian*), obrigada por ter me ensinado tantas coisas boas e lindas. Você se foi, está perto do nosso Deus, mas deixou muito de você dentro de nós.

A Julienne Santana de Morais, pela ajuda nos dados sobre transporte coletivo da cidade de Goiânia. Obrigada pela ajuda de sempre, você é demais...

Ao professor Luis Rodrigo do IME-IFG, pela ajuda na interpretação do modelo estatístico. Obrigada professor por sua disponibilidade e imensa ajuda.

Aos alunos do IFG, que me ajudaram e ajudam a ser professora...

A Capes pela ajuda financeira para conclusão da pesquisa de campo.

A todos os coordenadores e diretores das escolas municipais, estaduais e particulares da cidade de Goiânia. Esse trabalho dedico a vocês que me ajudaram a construí-lo. Obrigada pela ajuda e exemplo. Mesmo com tantas dificuldades, pude perceber em nosso convívio, como todos trabalham com dedicação e amor, fazendo da profissão de professor, um verdadeiro sacerdócio. Obrigada a todos...

Resumo

A presente tese tem por objetivo avaliar as relações entre a forma urbana, os fatores demográficos e socioculturais, na escolha do modo de transporte das crianças até a escola, na cidade de Goiânia-GO. Através da construção de um modelo do tipo logit multinomial, buscou-se avaliar o comportamento do usuário na escolha do modo de transporte nos deslocamentos escolares. Para tanto, foram realizadas pesquisas com os pais de alunos do ensino fundamental da cidade de Goiânia. A amostra foi dividida em sete regiões administrativas (Campinas-Centro, Leste, Oeste, Norte, Sul, Noroeste e Sudoeste) por rede de ensino (estadual, municipal e particular) de forma a mensurar como algumas variáveis da forma urbana influenciam a tomada de decisão dos pais na escolha do modo de transporte até a escola. Foram estimadas as probabilidades de escolha dos usuários pelos modos de transporte disponíveis como o caminhamento, a bicicleta, o automóvel e o transporte público. As análises dos dados para a cidade de Goiânia – GO, revelaram que: 1) considerando o modo caminhamento, os resultados demonstraram uma certa influência das variáveis relacionadas à forma urbana, mais especificamente: a área do setor, o comprimento e densidade de vias, a conectividade, a largura média das calçadas e as linhas de transporte coletivo que atendem e margeiam o setor. 2) algumas variáveis relacionadas à forma urbana não tiveram um forte peso dentro da função utilidade como esperado inicialmente, entre elas, destacam-se o número total de quadras, o comprimento médio das quadras, o número e tipo de intercessões além da densidade das intercessões.

Palavras-Chave: Forma Urbana – Viagens Escolares – Deslocamentos Não Motorizados – Análise Comportamental – Modelo Logit

Abstract

The objective of this thesis is to evaluate the relations between the urban form, demographic and sociocultural factors, on the choice of childrens means of transportation to school in the city of Goiânia. It was sought to evaluate the behavior of the user in the choice of means of transportation in school trips, through the construction of a logit multinomial model. Therefore, researches has been done with elementar school students parentes in Goiânia. The sample was divided in seven administrative regions (Campinas-Centro, Leste, Oeste, Norte, Sul, Noroeste e Sudeste), by teaching netwok (public and private), in order to measure how some of the variables oh the urban form influence the decision making of the parentes in the choice of means of transportation to the school. The probabilities of the users choice of means of transportations available is by feet, by bike, by car and public transportation were estimated. Analysis of the data fot the city of Goiânia - GO revealed that: 1) considering the walking mode, the results show a certain influence of the variable related to the urban form, more specifically: the neighborhood area, the lenght and density o flanes, the conectivity, the averge width of the sidewalks and the public transportation lines that attends the neighborhood. 2) some variables related to the urban form did not have a strong weight in the function utility as hoped initially, between them, the total number of blocks, the average length of the blocks, the number and types of intercessions besides the density of ntercessions stands out.

Keywords: Urban Form – School Trips – Displacements Non-Motorized – Behavioral Analysis – Logit Model

Lista de Figuras

Figura 1.1: Organização metodológica	18
Figura 3.1: Diagrama do modelo conceitual do comportamento de viagem de uma	55
criança até a escola	
Figura 4.1: Modelo logit binomial	71
Figura 4.2: Modelo logit multinomial	71
Figura 4.3: Modelo logit aninhado	71
Figura 4.4: Visão da tela principal do RStudio	74
Figura 5.1: Metodologia empregada no trabalho	78
Figura 5.2: Perímetro urbano e as sete regiões administrativas de Goiânia.	80
Figura 5.3: Planos Atílio Corrêa Lima e Armando Godoi	81
Figura 5.4: Macrozona construída e Macrozona rural	84
Figura 5.5: Modelo espacial de Goiânia	85
Figura 5.6: Percentagens de escolas do ensino fundamental nas sete regiões	91
administrativas de Goiânia.	
Figura 5.7: Escolas pesquisadas do ensino fundamental distribuídas nas sete regiões	93
administrativas de Goiânia	
Figura 5.8: Fluxograma de Análise do Modelo Estatístico	97
Figura 6.1: Modo de transporte/região das famílias pesquisadas	104
Figura 6.2: Modo de transporte/rede das famílias pesquisa	105
Figura 6.3: Modo de transporte na cidade de Goiânia das famílias pesquisadas	105
Figura 6.4: Renda/região das famílias pesquisadas	106
Figura 6.5: Renda/rede das famílias pesquisadas	106
Figura 6.6: Renda na cidade de Goiânia das famílias pesquisadas	107
Figura 6.7: Número de veículos/região das famílias pesquisadas	109
Figura 6.8: Número de veículos/rede das famílias pesquisadas	110
Figura 6.9: Número de veículos na cidade de Goiânia das famílias pesquisadas	110
Figura 6.10: Acompanhante das crianças até a escola/região das famílias	111
pesquisadas Figure 6.11: Acompanhento dos crianose eté a casala/rada dos famílias pesquisadas	111
Figura 6.11: Acompanhante das crianças até a escola/rede das famílias pesquisadas	112
Figura 6.12: Acompanhante das crianças até a escola na cidade de Goiânia das famílias pesquisadas	112
Figura 6.13: Idade das crianças/região das famílias pesquisadas	113
Figura 6.14: Idade das crianças/rede das famílias pesquisadas	113
Figura 6.15: Idade das crianças na cidade de Goiânia das famílias pesquisadas	114
Figura 6.16: Grau de Instrução dos pais/região das famílias pesquisadas	114
Figura 6.17: Grau de instrução dos pais/rede das famílias pesquisadas	115
Figura 6.18: Grau de instrução dos pais na cidade de Goiânia das famílias	115
pesquisadas	113
Figura 6.19: Tempo de deslocamento até a escola/região das famílias pesquisadas	116
Figura 6.20: Tempo de deslocamento até a escola/rede das famílias pesquisadas	116
Figura 6.21: Tempo de deslocamento até a escola na cidade Goiânia das famílias	117
pesquisadas	/
Figura 6.22: Influência na escolha da escola/região das famílias pesquisadas	117
Figura 6.23: Influência na escolha da escola/rede das famílias pesquisadas	118
Figura 6.24: Influência na escolha da escola na cidade de Goiânia das famílias	118

pesquisadas	
Figura 6.25: Percepção dos pais quanto as variáveis da forma urbana nos	119
deslocamentos a pé em Goiânia	
Figura 6.26: Percepção dos pais quanto as variáveis da forma urbana nos	113
deslocamentos por bicicleta em Goiânia	
Figura 6.27: Percepção dos pais quanto as variáveis da forma urbana nos	114
deslocamentos por ônibus/Goiânia	
Figura 6.28: Percepção dos pais quanto as variáveis moderadoras/mediadoras	114
deslocamentos a pé/Goiânia	
Figura 6.29: Percepção dos pais quanto as variáveis moderadoras/mediadoras	115
deslocamentos por bicicleta/Goiânia	
Figura 6.30: Percepção dos pais quanto as variáveis moderadoras/mediadoras	116
deslocamentos por ônibus/Goiânia	
Figura 6.31: Percepção dos pais quanto à importância das variáveis forma urbana –	117
moderadoras - mediadoras no deslocamento a pé/Goiânia	
Figura 6.32: Percepção dos pais quanto à importância das variáveis forma urbana –	118
moderadoras - mediadoras no deslocamento bicicleta/Goiânia	
Figura 6.33 – Percepção dos pais quanto à importância das variáveis forma urbana –	119
moderadoras - mediadoras no deslocamento ônibus/Goiânia	
Figura 6.34: % de interseções em Cruz e T dos bairros pesquisados	127
Figura 6.35 – Probabilidade de escolha dos modos - Goiânia	140
Figura 6.36 – Probabilidade de escolha dos modos - Goiânia	141

Lista de Tabelas

Tabela 2.1: Dimensões da forma urbana	27
Tabela 2.2: Relação das dimensões e seus elementos na estrutura urbana	32
Tabela 2.3: Relação das dimensões e seus elementos na estrutura urbana	33
Tabela 2.4 - Faixas de Serviço – Livre – Acesso às calçadas (Goiânia)	38
Tabela 5.1: Evolução da população de Goiânia – 1940 – 2010	83
Tabela 5.2: Total de Estabelecimentos de Ensino e Sala de Aula por tipo de vínculo -	88
Goiânia 2010 – 2012	
Tabela 5.3: Total de Estabelecimento de Ensino e Número de Escolas e Alunos	89
matriculados no Ensino Fundamental em Goiânia	
Tabela 5.4: Total de Escolas do Ensino Fundamental por Região Administrativa	89
Tabela 5.5: Total de Alunos Matriculados do Ensino Fundamental por R.A	90
Tabela 5.6: Forma de Coleta das Variáveis da Forma Urbana dos Bairros	96
Pesquisados	
Tabela 5.7: Resultados do Processamento Completo – R-Studio®	98
Tabela 6.1: Variáveis da forma urbana – bairros de Goiânia pesquisados	126
Tabela 6.2: Resultados do processamento completo – R-Studio®	130
Tabela 6.3: Variáveis do modelo completo – R-Studio®	131
Tabela 6.4: Variáveis de forma urbana avaliadas de maneira independente R-Studio®	131
Tabela 6.5: Resultados do processamento independente – R-Studio®	132

SUMÁRIO

1.INTRO	DUÇAO	14		
1.1 Cons	iderações iniciais	14		
1.2.Objet	tivos	16		
1.2.1 Objetivos gerais				
1.2.2	Objetivos específicos	16		
1.3 Justif	icativa	17		
1.4 Meto	dologia utilizada	18		
1.5 Origin	nalidade e relevância da tese	20		
1.6 Estru	tura do trabalho	20		
2. FORM	A URBANA E DESLOCAMENTOS NÃO MOTORIZADOS	23		
2.1 Form	a Urbana, ambiente construído e comportamento de viagens	23		
2.2 Variá	veis que caracterizam a forma urbana	27		
2.2.1 Densidade				
2.2.2 Diversidade				
2.2.3 Desenho Urbano				
2.2.4	Disponibilidade de transporte coletivo	40		
2.3 Estud	dos relacionam forma urbana e deslocamentos não motorizados	41		
2.4 Tópic	cos conclusivos	46		
3. VIAGE	ENS ESCOLARES DAS CRIANÇAS	49		
3.1 Com	portamento das viagens das crianças até a escola	49		
3.2 Ques	tão multidisciplinar	51		
3.2.1	Transportes	51		
3.2.2	Saúde	52		
3.3 Fator	es que influenciam as viagens das crianças até a escola	54		
3.3.1	Fatores mediadores	56		
3.3.2	Fatores moderados	58		
3.4 Estud	dos que relacionam deslocamento das crianças e forma urbana	60		
3.4 Tópic	cos conclusivos	63		
4. MODE	LOS PARA ANÁLISE COMPORTAMENTAL	67		
4.1 Base	s teóricas sobre modelos	67		
4.2 Cara	4.2 Características do modelo de escolha discreta			

4.2.1 Tipos de modelo de escolha discreta				
4.3 Modelo de regressão logística multinomial				
4.4 O software RStudio				
1.5 Tópicos conclusivos				
5. ASPECTOS METODOLÓGICOS	77			
5.1 Metodologia utilizada	77			
5.2 Delimitação da área de estudo	79			
5.2.1 Sobre a cidade de Goiânia	80			
5.2.2 Estatística e amostra da pesquisa	87			
5.3 Dados coletados com os pais	94			
5.4 Dados coletados variáveis da forma urbana	95			
5.5 O Modelo multinomial para a escolha dos diferentes modos				
5.5.1 Cálculo das utilidades e probabilidades da função resposta				
5.6 Tópicos conclusivos				
6. RESULTADOS OBTIDOS				
6.1 Resultados da pesquisa com os pais	103			
6.2 Resultados obtidos sobre a percepção dos pais quanto à importância das				
variáveis forma urbana assim como as variáveis moderadoras e	119			
mediadoras nas viagens escolares em Goiânia				
6.3 Resultados do levantamento da forma urbana 1				
6.4 Resultados sobre as escolhas dos diferentes modos	129			
6.4 Tópicos conclusivos	140			
7. CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS				
7.1 CONCLUSÕES				
7.2 SUGESTOES PARA TRABALHOS FUTUROS				
REFERÊNCIAS BIBLIOGRÁFICAS				
ANEXO A				
ANEXO B				

Introdução

1.0 INTRODUÇÃO

1.1 CONSIDERAÇÕES INICIAIS

A concentração da população em áreas urbanas e o espalhamento das cidades, nas últimas décadas, causaram um comprometimento dos serviços de transporte público, problemas ambientais e a consequente degradação da qualidade de vida. Essa expansão urbana para as áreas periféricas das cidades favorece o espalhamento das atividades urbanas, tornando a população dependente do uso dos modos de transporte motorizados, essencialmente o modo motorizado individual, devido a suas facilidades de locomoção e conforto.

As maiores cidades do Brasil, tal como ocorre em muitos outros países em desenvolvimento, foram transformadas, em décadas recentes, em espaços eficientes para o automóvel. A frota de automóveis cresceu substancialmente, alardeada como única alternativa eficiente de transporte para os cidadãos de mais elevados níveis de renda. O sistema viário sofreu ampliações e adaptações, órgãos públicos foram implantados para se garantir boas condições de fluidez para o automóvel, e a cultura voltada para o veículo individual foi implantada na vida dos cidadãos brasileiros.

O deslocamento a pé vem sendo reduzidos e sendo substituídos pelos modos motorizados, desde a Revolução Industrial. Os espaços urbanos são, muitas vezes, concebidos à infraestrutura de vias, sob um pensamento errôneo de sustentar as viagens realizadas por carro, que obteve um crescimento de 104,5% entre os anos de 2001 a 2012 no Brasil, DENATRAN (2013). Por outro lado, a infraestrutura pedonal e cicloviária fica negligenciada ou em segundo plano. É neste contexto que a maioria das cidades perde espaço para a escala humana e toma para si a escala motorizada, deixando, portanto, de proporcionar uma vida urbana mais agradável, cujas cidades sejam para pessoas e não para veículos. GEHL (2010).

Segundo Handy et al. (2002), as viagens a pé oferecem vários benefícios para uma comunidade, incluindo economia nos custos do transporte, melhoria na qualidade de vida, redução dos impactos ambientais, maior equidade de acesso às atividades urbanas, etc. Apesar de fornecerem todos estes benefícios, as viagens a pé, assim como as viagens por bicicleta, são muitas vezes negligenciadas nos planejamentos de transportes e as administrações públicas geralmente não valorizam os espaços para pedestres ou ciclistas. Além disso, as viagens curtas, as viagens de recreação ou

turismo e as viagens realizadas por crianças, são geralmente, desprezadas nos levantamentos de demanda de viagens.

Muitos fatores influenciam os deslocamentos das pessoas nas cidades, como, por exemplo, idade, renda, sexo, habilidade motora, capacidade de entendimento de mensagens e restrições de capacidades individuais. BRASIL (2007). Além desses fatores, muitas pesquisas sobre os Sistemas de Transporte estão focando suas análises na escala micro territorial, e procuram descrever em escala humana, em nível de bairro ou setores vizinhos, como as características do ambiente construído podem estimular ou dificultar a realização de viagens pelo modo a pé. FHWA (2000).

Os deslocamentos diários realizados a pé ou de bicicleta para ir ao trabalho ou escola, constituem uma associação positiva na saúde em geral das pessoas. Segundo Pont *et al.* (2009), crianças e adolescentes que utilizam o transporte não motorizado até a escola, são fisicamente mais ativos, tem níveis mais elevados de gastos energéticos e tem uma maior probabilidade de praticarem atividade física quando adultos, do que aqueles que se deslocam de maneira passiva. Nos EUA há uma forte preocupação com o estilo de vida das crianças, já que o índice de obesidade infantil aumentou 20% nos últimos 10 anos.

Segundo Mcdonald (2005), a forma como as crianças viajam até a escola nos EUA, mudou radicalmente. Em 1969, 42% dos estudantes caminharam ou pedalaram até a escola; em 2005, esse percentual baixou para 13%. As mudanças nas viagens escolares são importantes, pois 50% das viagens realizadas pelas crianças, de segunda a sexta-feira durante o ano letivo são para a escola.

Essa mudança não é uma questão apenas de saúde, mas influencia sobremaneira o planejamento de transportes. Uma melhor compreensão das viagens das crianças se faz necessário para um maior entendimento das viagens dos adultos. Segundo Handy (1996), em uma pesquisa sobre viagens não motorizadas e desenho urbano, a acessibilidade de infraestruturas para pedestres (com foco em presença, qualidade, distância de viagem, opções de rotas) está positivamente associada com o comportamento de caminhar. No caso das crianças, Diguiseppi et.al.(1998), afirma ser as distâncias entre a casa e a escola, uma das maiores barreiras para caminhar ou andar de bicicleta.

Dessa forma, pode-se dizer que os elementos ligados à forma urbana, como: o sistema viário, estrutura fundiária, espaços verdes e abertos, densidades de habitação, aspectos dos mobiliários urbanos e calçadas, estes definidos na legislação, como a lei do plano diretor e lei de uso e ocupação do solo, caracterizando formas urbanas diferenciadas, podem propiciar condições maiores ou menores ao deslocamento a pé ou de bicicleta às pessoas, influenciando na escolha do modo de transporte.

Esta tese pretende analisar a natureza e o modo da relação entre a forma urbana e fatores pessoais, demográficos e social/cultural na tomada de decisão dos pais sobre a viagem dos filhos até a escola. Através de uma pesquisa realizada com pais em escolas do ensino fundamental de Goiânia, avaliou-se a influência da forma urbana na escolha do modo de transporte até a escola.

Os procedimentos utilizados na pesquisa têm por finalidade identificar os fatores que influenciam na escolha do modo de transporte das crianças até a escola. Para atingir os objetivos desta tese, utilizou-se o modelo proposto por Handy (1996) e aprofundado por Mcmillan (2003). Dessa forma, a presente pesquisa se concentrou em identificar a relação entre a forma urbana e o comportamento das viagens das crianças até a escola incluindo a identificação e a compreensão de múltiplos fatores que não são da forma urbana, no entanto influenciam tal deslocamento.

1.2 OBJETIVOS

1.2.1 Objetivos Gerais

O objetivo desta tese é avaliar a relação entre a forma urbana, fatores demográficos e socioculturais, na escolha do modo de transporte das crianças até a escola, na cidade de Goiânia.

1.2.2 Objetivos Específicos

- a) analisar dentre os elementos da forma urbana, variáveis demográficas e socioculturais, quais efetivamente afetam a escolha do modo de transporte até a escola;
- b) avaliar através de um modelo comportamental do tipo logit multinomial as variáveis que influenciam na decisão dos pais sobre a escolha do tipo de modo de deslocamento até a escola (variáveis da forma urbana e fatores moderadores/mediadores).

1.3 - JUSTIFICATIVA

Estudos do comportamento de viagem das crianças são recentes na literatura, especialmente as viagens escolares. A viagem de uma criança até a escola é tanto complexa quanto importante, pois o deslocamento de toda família é influenciado sobremaneira pelos deslocamentos dos filhos.

Em todo mundo têm-se verificado um declínio nos deslocamentos a pé ou a bicicleta, em detrimento ao modo motorizado. Como exemplo, nos EUA, o aumento da obesidade infantil tem ocorrido ao mesmo tempo em que as crianças mudaram radicalmente seu modo de chegar até a escola. Estudos recentes têm mostrado que crianças que utilizam modos ativos de transporte até a escola (a pé/bicicleta) é provável que sejam mais ativos fisicamente durante outros períodos do dia, bem como, tem seu estado físico e mental aumentado. TUDOR-LOCKE et al. (2001).

Segundo Mcmillan (2003), as verdadeiras causas dessas mudanças no comportamento de viagem escolares ainda não são conhecidas. Porém, estudiosos de planejamento urbano atribuíram tal mudança a forma urbana de nossas comunidades. Segundo esta hipótese, elementos básicos como: aumento no comprimento de blocos ou quadras, maior largura das ruas e diminuição da presença de calçadas em comunidades levaram à diminuição da caminhada e do uso de bicicleta por crianças, causando impactos negativos a longo prazo sobre o transporte e a saúde pública.

O tráfego gerado em razão do funcionamento das escolas provoca congestionamentos em áreas residenciais, aumenta as emissões de carbono e faz com que a área ao redor dessas escolas não seja segura para as crianças. A realidade aponta para o aumento dos carros estacionados, de vans escolares e a dependência do uso do carro individual que conduzem a problemas de saúde, onde podem ser incluídos: saúde pessoal (por exemplo, através do aumento dos níveis de obesidade; meio ambiente (devido à deterioração da qualidade do ar, e aumento do nível de CO₂ e sobre o tráfego devido aos congestionamentos. PIKE (2003).

Segundo Pont *et al.* (2009), existem muitos fatores que influenciam a escolha do modo de transporte das crianças até a escola. Segundo uma vasta revisão literária dos autores sobre o assunto, as variáveis mais influentes são: distância casa-escola,

atributos socioeconômicos, características do ambiente construído e percepções dos pais ou responsáveis sobre a segurança da vizinhança e condição do tráfego de veículos no caminho até a escola.

No entanto, os estudos sobre forma urbana e o comportamento de viagem das crianças tem em sua maioria seguido duas vertentes: a construção de modelos para prever a demanda de viagens e as pesquisas empíricas, que buscam identificar os elementos que afetam o comportamento da viagem, sendo que a maior parte dessas pesquisas onde são relacionados o ambiente construído e a escolha do modo, se concentra mais especificamente em adultos.

O tema dessa tese justifica-se pelo fato de caracterizar o relacionamento entre forma urbana e o comportamento de viagens escolares de crianças entre 6-14 anos, incluindo a identificação de outros fatores que influenciam a decisão dos pais sobre o deslocamento dos filhos. Esse estudo propõe que existem múltiplos fatores que influenciam na decisão de como fazer a viagem para a escola. O entendimento de como esses fatores se relaciona, vai ajudar no desenvolvimento e planejamento de políticas públicas mais eficazes.

1.4 METODOLOGIA UTILIZADA

As etapas de organização metodológica estão sintetizadas na figura 1.1:

Figura 1.1 – Organização Metodológica

Na etapa de delimitação explorou-se a caracterização da cidade que constitui o objeto de estudo, a cidade de Goiânia. Iniciou-se a investigação e interpretação de toda estrutura urbana da cidade. A partir desse estudo a cidade foi dividida em sete regiões administrativas (utilizada pela prefeitura da cidade) a saber: Norte, Centro-Campinas, Leste, Oeste, Noroeste, Sul e Sudoeste. Foi realizada uma pesquisa com os pais dos alunos do ensino fundamental da cidade, que estudam nas redes estadual, municipal e federal. Foram realizados procedimentos estatísticos de amostragem da população, mostrados no capítulo 4 desta Tese. Nessa etapa foram levantadas as variáveis que, segundo HANDY et al (2002) permitem aferir as características do desenho urbano. Foram exploradas as seguintes:

- A conectividade viária;
- A escala viária;
- A qualidade estética;
- Os dados do transporte urbano nos bairros das escolas estudadas.

Destaca-se a importância da etapa de Delimitação pois serve de subsídio para identificação das variáveis que compõe o questionário o qual foi aplicado aos pais das crianças.

No que tange a Aquisição, essa fase diz respeito à coleta de dados que serviu para abastecer os modelos estatísticos integrantes da etapa posterior. Realizou-se nessa etapa:

- aplicação de um questionário aos pais das crianças matriculadas em escolas dos bairros que foram selecionados na etapa de delimitação;
- o levantamento in loco e com ajuda de mapas georefenciados da cidade de Goiânia, definidas na etapa anterior de avaliação do desenho urbano.

<u>Na Modelagem</u> optou-se por utilizar um modelo de escolha discreta multinominal do tipo Logit processado no software Rstudio®, uma plataforma gratuita (freeware), utilizando-se de modelos de otimização para a estimação dos valores mínimos da função de utilidade, o software faz a maximização da função, escolhendo dentre as várias alternativas possíveis àqueles cujos atributos proporcionem o maior nível de satisfação ao indivíduo.

<u>Por fim faz-se a interpretação</u> que consiste na análise dos resultados e avaliação das variáveis da forma urbana e outras variáveis que não são da forma urbana mas influenciam a tomada de decisão dos pais quanto a escolha do modo de transporte até a escola.

1.5 ORIGINALIDADE E RELEVÂNCIA DA PESQUISA

De acordo com a literatura, o desenvolvimento de modelos comportamentais tem sido estimulado por vários grupos de pesquisadores. Grande parte dos trabalhos realizados para verificação da análise comportamental estuda as viagens realizadas por adultos, negligenciando os deslocamentos das crianças.

A originalidade do trabalho se dá na possibilidade de incorporar variáveis da forma urbana nos modelos comportamentais objetivando prever as relações entre as viagens escolares e a forma urbana em uma cidade brasileira, utilizando para isso modelos multinomiais. A relevância dessa pesquisa está em formular e estimar um modelo comportamental de escolha discreta do tipo Logit Multinomial, considerando a relação entre forma urbana e a escolha do modo de viagem realizada por crianças do ensino fundamental na cidade de Goiânia.

1.6 ESTRUTURA DO TRABALHO

A presente tese foi estruturada em sete capítulos que abrangem desde os fundamentos teóricos necessários para o desenvolvimento do trabalho até a avaliação dos resultados e as conclusões finais. No capítulo 1 são abordadas as considerações iniciais da pesquisa, os objetivos gerais e específicos, a justificativa do trabalho e a organização metodológica. Nesta primeira etapa destaca-se também a originalidade e relevância do trabalho.

O capítulo 2 dedica-se a explorar os conceitos referentes à forma urbana e os deslocamentos não motorizados. Procura-se descrever os fundamentos teóricos sobre o planejamento de transportes e a forma urbana destacando algumas variáveis relacionadas como a densidade, a diversidade, o desenho urbano e a disponibilidade do transporte coletivo. Constitui-se a base teórica necessária ao desenvolvimento do trabalho.

As viagens escolares das crianças e suas características são abordadas no capítulo 3. Destacam-se os fatores mediadores e moderados que não são variáveis da forma urbana, mas que influenciam a tomada de decisão dos pais quanto as viagens escolares das crianças. Apresenta-se dois modelos que tratam da estrutura das

viagens segundo Macmilan e Handy. O estudo destes trabalhos já consagrados na literatura serviu de base para a elaboração do modelo específico utilizado na cidade de Goiânia que representa o principal propósito da presente tese.

O capítulo 4 dedica-se a explorar os modelos existentes para a análise comportamental. São apresentadas as bases teóricas dos principais modelos utilizados dedicando-se, principalmente, aos modelos de escolha discreta. O modelo de regressão logística multinomial, bastante explorado na pesquisa, é também pormenorizado neste capítulo.

Os aspectos metodológicos utilizados para o levantamento dos resultados foram abordados no capítulo 5, onde é apresentada a cidade de Goiânia como estudo de caso. Nesse capítulo é exibida as características das regiões administrativas estudadas, a análise exploratória dos dados obtidos principalmente sobre os modais utilizados na condução das crianças até a escola. No capítulo 6, apresenta-se a análise dos resultados com o cálculo das utilidades e probabilidades que definem o modo de escolha por parte dos adultos e os fatores que influenciam na tomada de decisão. O capítulo 7 apresenta as conclusões e sugestões para trabalhos futuros.

Forma Urbana e os Deslocamentos Não Motorizados

2.0 FORMA URBANA E DESLOCAMENTOS NÃO MOTORIZADOS

2.1 FORMA URBANA, AMBIENTE CONSTRUÍDO E COMPORTAMENTO DE VIAGENS

Nos últimos anos nota-se que a forma de viajar dos brasileiros mudou significativamente. Devido à expansão urbana e espalhamento das atividades, a população se tornou dependente dos meios motorizados de transporte, principalmente o individual, cujo apelo principal refere-se à sua facilidade de locomoção e o conforto. O número de pessoas nas cidades aumentou em demasiado nas últimas décadas. Segundo Vasconcellos (2014), o número de pessoas nas cidades aumentou significativamente e na segunda metade do século XX, a população urbana passou de 19 milhões para 138 milhões, multiplicando-se 7,3 vezes, com uma taxa média anual de crescimento de 4,1%. Ou seja, a cada ano, em média, mais de 2,3 milhões de habitantes foram acrescidos à população urbana.

Ao longo desse período, não houve uma política consistente de desenvolvimento urbano no Brasil. Na falta de uma legislação eficiente do Estado na regulação dos conflitos de uso e ocupação do solo, grupos sociais de baixa, média e alta renda usaram estratégias para gerar o novo espaço urbano que lhes interessava. Esse processo gerou de um lado renovações urbanas em áreas mais centrais (onde se localizou a classe média), empreendimentos distantes da área central e bem definidos espacialmente (onde se localizou a classe de renda alta), impactando a mobilidade na medida em que os novos moradores tornaram-se cativos do modo individual para a maioria dos seus deslocamentos. (VASCONCELLOS, 2014)

Muitos autores atribuem o aumento do uso do automóvel à cultura do consumismo e do *status* da população que vivem nos centros urbanos. Nesse ritmo de crescimento dos deslocamentos realizados por veículos individuais, aumentam os investimentos na implantação de uma infraestrutura viária voltada para o "carro" - as ciclovias e a infraestrutura pedonal são esquecidas e por vezes não constam nos projetos de urbanização. Nesse cenário, as cidades doam espaço para escala motorizada e perdem espaço para a escala humana.

Estudos de Jacobs (2000) indicam que os espaços nas cidades estão se transformando e "estranhamente" cedendo lugar ao automóvel e essa transformação das grandes cidades devido principalmente ao aumento da motorização, influencia de

maneira negativa os espaços urbanos e as relações sociais. A dimensão humana deu lugar aos veículos motorizados.

De acordo com Gehl & Svarre (2013) observou a vida na cidade, "tão natural" durante décadas, não recebia a devida atenção e pouco se estudava o impacto de sua constante deterioração. Os efeitos da substituição das pessoas pelo tráfego de veículos são assoladores e os espaços urbanos são cada vez mais dos carros e os problemas de poluição gerada por esses veículos, aumentam os riscos de doenças respiratórias, além de causar prejuízos financeiros aos cofres públicos.

No que tange a arquitetura, estudos que contemplam a natureza social, econômica e política do espaço têm sido desenvolvidos, especialmente nas últimas décadas. Todavia, ainda falta um aprofundamento preciso quanto à articulação da cidade em termos de hierarquias e permeabilidades; e como esses fatores diretamente relacionados à forma ilustram o estado atual das cidades no Brasil e no mundo, e seus associados processos de expansão urbana.

O WORLD BANK (2002) apud Amancio (2005), identifica a necessidade de ênfase em políticas e instrumentos relacionados à ocupação urbana, que influenciem a escolha modal, beneficiando o transporte coletivo e os transportes não motorizados. A operacionalização desta ênfase depende de um melhor entendimento do relacionamento entre a forma urbana e o comportamento de viagens nos países em desenvolvimento.

Segundo Banister (2008), existem evidências que o ambiente construído exerce influência sobre os padrões de deslocamento das pessoas, mesmo que alguns pesquisadores sejam contrários quanto à possibilidade das características da forma urbana poder afetar a demanda por transportes.

Os modelos de escolha modal que relacionam as características do ambiente construído e sua influência no comportamento de viagem objetivam alcançar uma diminuição na quantidade de viagens motorizadas individuais a partir do aumento na participação das viagens não motorizadas (a pé, bicicleta) e do transporte coletivo. Dentre os modos de transporte, os não motorizados (a pé e bicicleta) são os menos danosos a vida urbana, por serem não poluentes e por não consumirem combustíveis fósseis. Entretanto, os planos e projetos de transportes ignoram a existência de bicicletas e pedestres. Além disso, poucos dados têm sido coletados sobre transportes

não motorizados e os fatores que influenciam as pessoas a optarem por andar a pé ou a utilizarem a bicicleta como meio de transporte (AMÂNCIO, 2008).

Segundo Ferraz (1998), o transporte coletivo é um serviço essencial nas cidades e desenvolve papel social e econômico de grande importância, pois democratiza a mobilidade, na medida em que facilita a locomoção das pessoas. O mesmo constitui um modo de transporte imprescindível para reduzir os congestionamentos, diminui os níveis de poluição e o minimiza uso indiscriminado de energia automotiva.

Entre os diversos fatores importantes para o bom desempenho do sistema de transporte urbano estão as características urbanas que constituem o que se conhece na literatura como forma urbana, as quais influenciam diretamente no comportamento de viagem das pessoas. As características do meio físico urbano desempenham um papel importante nas escolhas modais individuais de transportes, agindo frequentemente como uma restrição nas alternativas que poderiam estar disponíveis. (AMANCIO, 2005)

De acondo com Frank e Pivo (1994) a forma urbana refere-se a distribuição das atividades dentro do sistema urbano. Segundo os autores, a densidade populacional, a densidade de empregos, a diversidade de usos do solo e o mix entre moradias e locais de trabalho são as quatro variáveis primárias com as quais o comportamento de viagem tem sido mais correlacionado. O termo "Forma Urbana" foi expandido por Handy (1996a), que tratou de uma forma mais ampla as questões relacionadas ao "uso do solo". Segundo essa nova abordagem, além dos padrões do uso do solo, os aspectos do desenho urbano e as características do sistema de transporte fazem parte de uma mesma estrutura da forma urbana.

Segundo Handy et al. (2002) padrão de uso do solo diz respeito à "distribuição de atividades ao longo do espaço, incluindo a localização e densidade de diferentes atividades, onde atividades estão agrupadas em categorias mais amplas como residencial, comercial, industrial, e outras atividades" e é "preocupado com a função e apelo de espaços públicos". Já o desenho urbano "é o desenho da cidade" e os elementos físicos inseridos nele, incluindo o seu arranjo e aparência, refere-se a infraestrutura física de estradas, calçadas, ciclovias, ferrovias, pontes, etc, bem como o nível de serviço ofertado pelo fluxo de tráfego, frequência e oferta do transporte público e similares.

Segundo Cervero (2002), a relação entre o ambiente construído e as mudanças no comportamento da demanda por transporte é um tema que vem sendo investigado e explorado por pesquisadores nos últimos anos. Planejadores urbanos têm estudado outros conceitos conhecidos por *New Urbanism*, *Friendly Neighborhoods* e *Transit Oriented Development* (TOD), visando promover formas urbanas cujos atributos incentivem o uso de modos de transportes alternativos ao automóvel particular.

O *New Urbanism* é um movimento internacional que visa novas estratégias para reformular o desenho do ambiente construído, visando aumentar a qualidade de vida das pessoas, e busca articular características específicas de desenho das redes de transporte público, redes de calçadas e caminhos interconectados, grandes espaços públicos e redução do uso do automóvel. Em sintese o movimento têm por objetivo:

- Melhorar a capacidade de realizar viagens a pé (walkability);
- Conectividade para o pedestre e usuário do transporte público;
- Uso misto do solo;
- Diversidade, incluindo pessoas de idades, níveis culturais e sociais distintos;
- Padrões de residência mistos;
- Qualidade arquitetônica e desenho urbano;
- Estrutura de vizinhança tradicional, com um centro comercial, espaços públicos, diversidade de usos à 10 minutos a pé;
- Aumento na densidade;
- Transporte inteligente (smart transportation), conectando cidades e bairros que tenham uma relação consolidada;
- Sustentabilidade;
- Qualidade de vida.

A presente tese sustenta-se na premissa de que a partir do entendimento de como se dão as relações entre as características urbanas e o comportamento dos pais em relação às viagens escolares de seus filhos, é possível propor medidas que tenham como objetivo a diminuição da priorização e dependência do transporte particular e estimular o uso de transportes mais sustentáveis como o caminhamento, o uso da bicicleta e do transporte público urbano.

2.2 VARIÁVEIS QUE CARACTERIZAM A FORMA URBANA

Na literatura são encontradas várias maneiras de caracterizar a influência da forma urbana sobre o comportamento de viagem, inclusive os dados podem ser calculados dentro de zonas como as censitárias, zonas de tráfego e de uma forma mais desagregada, considerando a residência do indivíduo.

Tabela 2.1 - Dimensões da forma urbana

Dimensão	Definição	Exemplo e Medidas
1.Densidade e Intensidade do	Quantidade de atividade em uma dada	- Pessoas/ área;
desenvolvimento	área	- Nº Empregos/área;
		- Proporção de espaço
		construído em relação à
		área total do terreno.
2. Uso misto do solo	Proximidade de diferentes cate-	- Distância da residência ao
	gorias de uso do solo.	comércio mais próximo;
		- Parcela total da área do
		terreno adotado para
		diferentes usos;
		- Indice de dissimiliridade.
3.Conectividade viária	Disponibilidade e lineariedade	- Interseções/Km²
	de rotas alternativas ao longo	- Proporção de distância em
	da rede	linha reta da distância na
		rede;
		- Extensão média de uma
		quadra.
4. Escala Viária	Espaço tridimensional ao lon-	- Proporções das alturas dos
	go de uma via enquanto limi-	edifícios em relação à
	tado por edifícios.	largura da via;
		- Distância média da rua aos
		prédios
5. Qualidades Estéticas	Atratividade e apelo de um local	- Percentual de terreno à
		sombra ao meio dia;
		- N° e locais com pixações;
		- Percepções paisagísticas
		de um local;
		- Qualidade de espaço para
		pedestres.

Fonte: Handy et al (2002)

Um dos primeiros e mais importantes estudos dessa linha é o trabalho de Cervero e Kockelman (1997). Neste trabalho, os autores definiram os "3D", Densidade (density), Diversidade (diversity) e Desenho (design), como as três principais dimensões do ambiente construído com impacto sobre as viagens. Handy et al. (2002) definiu cinco dimensões da forma urbana medidas nessas escalas geográficas que constitui a densidade e intensidade de desenvolvimento, o uso misto do solo, a conectividade viária, a escala viária e a qualidade estética, que podem ser visualizadas na tabela 2.1.

Moudon et al. (2006) citam que as variáveis do ambiente construído que mais explicam as condições de caminhabilidade (walkability) são: maior densidade, proximidade de distintas atividades e quadras de tamanhos reduzidos. Nesse contexto, trabalhos como Cervero e Kockelman (1997), Cervero e Duncan (2003) e Krizek (2003) contemplaram três principais dimensões influenciando a realização de viagens: densidade, diversidade e desenho urbano. Outras duas dimensões foram incluídas posteriormente: o destino acessível e a disponibilidade de transporte público.

Conforme Rocha et al. (2012) apud Rodrigues et al. (2013), a densidade é a intensidade do uso do solo em termos de habitação, emprego e outras atividades em determinada área; a diversidade reflete a heterogeneidade do uso do solo e interfere na proximidade das atividades. O desenho urbano refere-se à qualidade e à configuração física da malha viária, influenciando na continuidade e na conectividade da rede de caminhos dos pedestres; destino acessível compreende o tipo e quantidade de atividades e oportunidades disponíveis em seu entorno e a disponibilidade de transporte público é obtida pela acessibilidade ao mesmo.

2.2.1 Densidade

Uma diversidade de pesquisas realizadas sobre características da forma urbana e comportamento de viagem revelam que bairros com altas densidades populacionais a percentagem de viagens realizadas por carro individual é menor e a própria configuração urbana incentiva a realização de viagens utilizando modos não motorizados. Esse fato acontece, devido nesses bairros existir uma maior concentração tanto de atividades comerciais quanto residenciais propiciando uma menor distância a ser percorrida entre as origens e os destinos das viagens, facilitando aquelas não motorizadas.

Segundo Cervero e Kockelman (1997) os bairros relativamente densos tendem a ter quadras curtas, padrão viário em formato de grelha e uma rede de calçadas, além de estarem associados à oferta limitada de estacionamento, maior intensidade de serviço de transporte coletivo e mistura de usos do solo.

Por ser uma variável cujos dados são de fácil levantamento (normalmente as informações podem ser obtidas de órgãos públicos de estatística), essa variável é bastante utilizada por pesquisadores para descrever a forma urbana. BOARNET & CRANE (2001)

Existem inúmeras formas de se representar a densidade urbana, aqui será apresentada as três principais, e que aparecem em: AMÂNCIO (2005); FRANK & PIVO (1994); BOARNET & CRANE (2001); CERVERO & KOCKELMAN (1997). A densidade populacional é calculada como:

$$DPi = \frac{PTi}{ATi}$$
 2.1

Onde:

DPi = densidade populacional no bairro i (habitantes por hectares);

Pi = população total do bairro i (número de habitantes);

ATi =área total do bairro i (ha).

Já a densidade residencial é definida como:

$$DRi = \frac{RTi}{ATi}$$
 2.2

Onde:

DRi = densidade residencial no bairro i (residências por hectare);

RTi = número total de residências no bairro i;

ATi = área total do bairro i (ha).

A percentagem de ocupação é dada por:

$$POi = \frac{ATCi}{ATi}$$
 2.3

Onde:

POi = percentagem de ocupação do bairro i;

ATCi = área total construída no bairro i (ha);

ATi = área total do bairro i (ha).

2.2.2 Diversidade

Segundo Handy et al (2002) apud Takano (2010) a diversidade de uso do solo é definida como a relativa proximidade de diferentes tipos e uso do solo dentro de uma área sob análise e pressupõe-se que a combinação de diferentes usos compatíveis e próximos entre si diminui a distância entre origens e destinos das viagens.

Para determinar a diversidade de usos do solo ou a mistura de usos em uma determinada área, os pesquisadores empregam metodologias variadas cujo objetivo é apresentar um índice (quantitativo) de diversidade de usos que represente a realidade local. Neste trabalho será utilizado o índice de entropia, medida também utilizada em outros trabalhos como: ARRUDA (2000); CERVERO & HOCKELMAN (1987); FRANK & PIVO (1994); TAKANO (2010). O índice de entropia avalia a distribuição da área construída entre diferentes categorias de usos do solo dentro das zonas de análise, por exemplo, setores censitários, e pode ser calculado pela equação:

$$E_{i} = \frac{-\sum_{j=1}^{k} (p_{ji})(lnp_{ji})}{(ln k)}$$
2.4

Onde:

 E_i = índice de entropia no setor censitário i;

p_{ii}= parcela da área construída ocupada pelo uso do solo j no setor i;

K = número de categorias de uso do solo consideradas.

Segundo Cervero (1998) uma mistura de usos do solo entre residências, lojas, escritórios e instituições, permite aqueles que dependem do transporte público a fácil conexão entre os múltiplos destinos a pé ou no transbordo entre uma viagem e outra. O autor ainda comenta que áreas comerciais bem localizadas, podem permitir que as pessoas façam suas compras no caminho de casa ao final de um dia de trabalho, assim fazendo o encadeamento das viagens de trabalho e compras em uma única viagem.

2.2.3 Desenho Urbano

O desenho urbano lida com a dimensão física espacial das cidades. Deve articular e conectar as boas práticas da Arquitetura, do Urbanismo e da Engenharia de Transportes na busca da promoção das potencialidades do ambiente construído na conversão de suas limitações em oportunidades, de forma a aproveitar e promover o contato social, a vitalidade comercial e a eficiência da cidade (VILLOTA, 2001; DEL RIO, 2004; CUTHBERT, 2005) *apud* RODRIGUES *et al.* (2013).

Sabe-se que a adoção de projetos com desenho urbano bem estruturado pode resultar em uma mudança no comportamento das pessoas quanto ao uso do automóvel, reduzindo o fluxo de veículos e incentivando as pessoas ao acesso às suas atividades por meio da caminhada. Uma boa infraestrutura fornece conexões adequadas entre origens e destinos, que inclui a distância para os pontos de ônibus, estações e terminais de transporte público dentro do ambiente construído. (MOUDON *et al.*, 2006; CERVERO *et al.*, 2009).

As viagens a pé no desenho urbano, o comprimento e o número dos caminhos devem ser compatíveis com as distâncias de caminhada, Rodrigues (2013), pois os pedestres possuem limitações físicas que restringem sua área de acesso, como por exemplo pessoas com mobilidade reduzida.

Neste contexto, o desenho urbano já existente dificilmente pode ser alterado e compreendê-lo pode ajudar na construção de novas localidades e em adequações de setores existentes da cidade, além de permitir investigar o grau e a qualidade de acesso dos pedestres. Por isto, a necessidade de se estudarem os indicadores que medem a influência do desenho urbano nas viagens a pé. (CERVERO et al., 2009).

Uma forma de se reduzir as viagens realizadas por automóveis, está diretamente associada à busca de alternativas que aumentem os deslocamentos feitos por modo não motorizados. Para isso é necessário que as pessoas se sintam atraídas a caminharem até seus destinos, e façam a opção por realizar o trajeto a pé ou de bicicleta, sendo ainda necessário que uma série de condições sejam satisfeitas.

Em seu trabalho na Baía de São Francisco Cervero & Kockelman (1997) analisaram como as três dimensões, densidade, diversidade e desenho urbano, afetam as taxas

de viagens a pé em uma área residencial, e relacionaram alguns elementos para cada uma destas dimensões conforme mostra a tabela 2.2

Tabela 2.2 - Relação das dimensões e seus elementos na estrutura urbana

Dimensão	Elementos	Descrição	
	Densidade populacional	Número de pessoas por hectare.	
Densidade	Densidade de emprego Emprego por hectare.		
	Acessibilidade ao emprego	Relação com a proximidade das atividades no do uso do solo.	
Diversidade	Índice de dissimilaridade	Proporção de diferentes usos do solo dentro de uma área.	
	Entropia	Variação das categorias de uso do solo dentro de uma área, que pode variar: 0 – homogênea, 1 – heterogênea.	
	Mescla de categoria	Proporção da parcela comercial/varejo com mais de uma categoria de uso do solo.	
	Intensidade Comercial	Número de atividades comerciais por hectare.	
	Proximidade Comércio varejista	Número de atividades comerciais e número de residências dentro de ¼ de milha (400 metros).	
Desenho Urbano	Rua	Padrão predominante (malha regular, malha curvilínea); Proporção de cruzamentos em cruz; Número de quarteirões; Número de ruas sem saída.	
	Infra-estrutura	Comprimento do quarteirão; Largura de calçada; Proporção de cruzamentos com controle de sinalização; Distância entre postes de luz; Ciclovia por km.	
	Desenho local	Proporção comércio-varejo e serviço com estacionamentos Estacionamento em frente e ao lado do estabelecimento; Parques de estacionamentos entre os estabelecimentos; Número de estabelecimentos que oferecem serviços sem sair do carro.	

Fonte: Cervero e Kockelman (1997).

Tabela 2.3 - Relação das dimensões e seus elementos na estrutura urbana

Dimensão	Elementos	Estratégia para Operacionalização/ comentários
Densidade	População, unidades habitacionais, ou empregados por área.	Variáveis mais facilmente acessíveis para operacionalizar da estrutura urbana e, portanto, mais comumente utilizadas do que qualquer outra medida.
	Intensidade de usos do solo	Medidas de densidade de varejo, de centros comerciais, de atividades, de parques públicos, de população.
	Atividades não residenciais	Presença ou ausência de uma loja dentro de 90 metros; qualquer tipo de atividades não residenciais classificadas como de uso misto.
	Presença de restaurantes e farmácias	Restaurantes ou drogaria entre 90 metros e 1600 metros.
	Distância da casa ao supermercado, posto de gasolina ou parque.	Estimativa de 160 metros.
	Distância para o varejo.	Percentual de domicílios a uma curta distância da zona de varejo.
Diversidade	Dados sobre o emprego no varejo	Trabalhadores de varejo dentro de 1600 metros da residência; Número de estabelecimentos somados ao longo de meio-quilômetro; Número de estabelecimentos que são indústria; Densidade do emprego no varejo e serviço por setor censitário; Distância média das viagens para se comprar um dos doze itens de necessidades básicas de bens e serviços (não foram definidos quais itens).
	Entropia	Mede a presença ou a ausência do uso do solo.
	Índice de dissimilaridade ou dessemelhança	A média de acúmulo de pontos do intervalo onde cada hectare desenvolvido é avaliado com base na dissimilaridade dos hectares em torno.
	Interseções em cruz	Contados manualmente, usando fotografias aéreas e mapas; Inspecionada a rede de transporte dentro 800 metros de uma casa para estabelecer ruas como conectadas, rua sem saída ou uma mista; Densidade de interseção por zona de transporte; Número de cruzamentos em cruz dentro de 800 metros das residências; A média de tamanho dos quarteirões, contados manualmente para cada local de estudo.
Desenho	Rua	Utilizadas as informações do sistema central de informação geográfica.
Urbano	Disponibilização de calçadas	Razão entre o comprimento do sistema de calçadas e o comprimento das ruas; Proporção de quarteirões com calçadas; Calçadas dos dois lados, de um lado só ou em nenhum dos lados da rua; A média do tempo de deslocamento.
	Volumes de tráfego veicular	Medidos por uma única rua e aplicados a toda área de estudo.
	Dimensão do desenho	Calçada e rua iluminadas, canteiros, comprimentos de bloco, terreno plano, a acessibilidade a pé.

Fonte: Krizek (2003)

Em uma vasta revisão do trabalho de Cervero & Kockelman (1997), Krizek (2003) por sua vez, propôs um índice que mede o nível de acessibilidade do bairro, através das três dimensões (densidade, diversidade e desenho urbano), no entanto, preferiu medir a influência do desenho urbano nas viagens a pé pelo tamanho dos quarteirões ou pela densidade de interseções do que por sua forma geométrica, como mostra a tabela 2.3 acima.

Para avaliação da influência do desenho urbano sobre o comportamento e escolha do modo de viagem, pode-se utilizar o índice proposto por KRIZEK (2003). Segundo a tabela 2.3, deve-se fazer o levantamento de 5 (cinco) parâmetros: interseções em cruz, ruas, disponibilidade de calçadas, volumes de tráfego veicular e dimensão do desenho. Essas variáveis podem ser definidas através de levantamentos "in loco" e/ou com ajuda de mapas digitais da região de estudo.

Como em HANDY (1996a) e MCMILAN (2003), neste trabalho optou-se em estudar como a forma urbana influencia a escolha do modo de transporte através das características do desenho das vias e do bairro. As variáveis consideradas nesses trabalhos foram:

1. Área do Setor

Área total do Setor ou bairro, que servirá para o cálculo de outras variáveis como densidade de vias e quadras. Pode ser medida em hectare ou km²

2. Comprimento médio das quadras

Para o cálculo da conectividade das vias é necessário que se faça a medida do comprimento das quadras do setor. Geralmente o comprimento das quadras é medido entre os centros das intersecções das vias de cada lateral da quadra. Os padrões de comprimento das quadras variam de 0,10 a 0,20 km, mas os padrões mais aceitáveis a promover o modo a pé são comprimentos ainda menores. Quadras que possuem dimensões menores representam um aumento no número de interseções, resultando em um número maior de rotas e distâncias relativamente mais curtas de caminhadas (HANDY et al, 2002).

3. Número total de quadras

Referente ao número total de quadras do setor

4. Densidade de quadras

$$D_{q} = \frac{\text{Número total de quadras do setor}}{\text{área do setor}}$$
2.5

Valor referente ao número total de quadras do setor por unidade de área. Um valor mais alto da densidade de quadras representa, um número maior de quadras no setor e, portanto, uma maior variedade de caminhos aos pedestres, tornando-se mais atraentes aos usuários que optarem por andar a pé.

5. Comprimento das vias

Medida do comprimento linear das vias do bairro

6. Densidade de vias

$$D_v = \frac{\text{Comprimento total das vias (km)}}{\text{área do setor (km}^2)}$$
2.6

É a relação entre o comprimento linear das vias por unidade de área (por exemplo, quilômetro de vias por km²). Um valor mais alto do índice representa mais vias e, portanto, uma conectividade mais alta.

7. Número de interseções em cruz

Número total de interseções em formato em cruz no setor

8. Número de interseções em T

Número total de interseções em formato T no setor

9. Número total de interseções

Soma do número de Interseções em cruz e T no setor

10. Densidade de Interseções

$$D_{i=\frac{\text{Número total de interseções}}{\text{ôrea do sator}}}$$
2.7

É a medida da relação entre o número de interseções por unidade de área. Um valor mais alto desse índice indicaria um número maior de interseções e dessa forma uma conectividade mais alta

11. Conectividade

$$C_{PV} = \frac{\text{n\'umero de interse\'ções em cruz}}{\text{n\'umero total de interse\'ções}}$$
 2.8

Uma forma de medir a conectividade é fazer uma verificação do padrão do sistema viário, ou seja, avaliar se a mesma é em forma de grelha ou não, pois um sistema viário na forma de grelha representa um maior número de intersecções em "cruz", onde teoricamente aumenta-se a conectividade entre os segmentos de vias.

Ao contrário, se um sistema viário não é em forma de grelha, significa que o mesmo possui um número maior de intersecções em "T" e *cul-de-sacs* em sua configuração, representando uma baixa conectividade entre os segmentos de vias. O índice pode variar entre 0 e 1 e quanto mais próximo de 1 estiver, representa uma configuração do sistema viário em forma de grelha. Muitos estudos indicam esse tipo de padrão viário como sendo o mais eficiente para incentivar as viagens a pé, pois apresentam uma maior variedade de opções de rotas.

12. Largura média das calçadas

Referente a largura média das calçadas no setor

As calçadas devem possuir dimensões adequadas para o deslocamento dos pedestres e ainda a passagem dos Portadores de Necessidades Especiais (PNE) em cadeiras de rodas. Além disso, espaços para plantio de árvores e colocação de mobiliário urbanos devem ser reservados.

Segundo o HCM (2000), quando dois pedestres passam um pelo outro, para que não haja interferência na caminhada de ambos, a largura de calçada destinada a ambos deve ser de 0,8 metros de largura. Quando existirem pedestres que gostam de caminhar juntos, deve-se considerar como largura o espaço de 0,7 metros para cada um. Espaço lateral menor do que este só ocorre nas horas de maior movimento.

Já Gondim (2001) afirma que a calçada de uma via deve ter 1,50m de largura efetiva para que os pedestres possam transitar com segurança e conforto. A autora não avaliou fluxos de pedestres em seu estudo e as condições operacionais das vias, limitou-se somente à análise geométrica dos componentes da via, de forma individualizada.

Existem na literatura uma quantidade diversa de métodos que visam identificar quais características do ambiente podem torná-lo o ambiente mais agradável ao pedestre, dentre eles pode ser citado o trabalho de Ferreira e Sanches (2001) que apresentaram um método que visa avaliar a qualidade das calçadas sob a ótica do usuário. A existência de calçadas e a qualidade das mesmas (nos aspectos de segurança, seguridade, conforto, conectividade e estética), além da largura adequada, podem incentivar a opção dos indivíduos em realizar suas viagens a pé.

Em Goiânia (cidade escolhida como estudo de caso nesta Tese), foi enviada à Câmara do Município em 10/06/2016 um Projeto de Lei que regulamenta as calçadas da cidade. No documento as calçadas são padronizadas quanto à inclinação, declividade, instalação de mobiliários urbanos, sequenciamento com as calçadas vizinhas e obrigatoriedade de instalação de piso tátil.

Segundo o novo Projeto de Lei, as calçadas em Goiânia devem ser organizadas em três faixas: faixa de serviço, contígua ao meio-fio; faixa livre, localizada entre a faixa de serviço e a faixa de acesso; faixa de acesso, contígua ao alinhamento frontal dos lotes ou unidades. Estas faixas padronizadas e suas medidas estão apresentadas na tabela 2.4. As medidas constantes na tabela e apresentadas no projeto de lei dizem respeito à largura da faixa; inclinação transversal máxima da calçada, com queda no sentido do lote para o meio-fio, (exceto nos rebaixos da calçada para acesso de veículos ou pedestres); largura da lixeira e indicação de permissão para ajardinamento ou floreira.

Tabela 2.4 - Faixas de Serviço – Livre – Acesso às calçadas (Goiânia)

Larguras das faixas da ajardinamento/floreira	a calçada; inclinações transv	ersais máximas*; larguras das li	xeiras; permissão para
Largura da calçada	Dimensões em metros (m), exceto inclinação transversal		
(L) em metros (m)	Faixa de serviço	Faixa livre	Faixa de acesso
L < 1,50		Largura da calçada (***)	
		Inclinação máxima de 3%	
1,50 ≤ L < 2,10	Largura restante da calçada	Largura mínima de 1,50 (***)	
	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)	Inclinação máxima de 3%	
	Largura permitida da lixeira: 0,45		
2,10 ≤ L < 3,0	Largura de 0,60 a 1,00	Largura mínima de 1,50 (***)	Largura restante da calçada
	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)	Inclinação máxima de 3%	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)
	Largura permitida da lixeira: 0,45 a 0,60		
	Permitida floreira conforme artigo 14 desta Lei		Permitido ajardinamento conforme artigo 22 desta Lei.
3,00 ≤ L < 4,0	Largura de 0,70 a 1,00	Largura mínima de 1,50 (***)	Largura: restante da calçada
	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)	Inclinação máxima de 3%	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)
	Largura permitida da lixeira: 0,45 a 0,85		
	Permitida floreira conforme artigo 14 desta Lei		Permitido ajardinamento conforme artigo 22 desta Lei.
L ≥ 4,0	Largura de 0,70 a 1,00	Largura mínima de 2,00 (***)	Largura: restante da calçada
	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)	Inclinação máxima de 3%	Inclinação máxima de 3% para calçadas novas e 8,33% para calçadas antigas (**)
	Largura máxima da lixeira: 0,45 a 0,85		
	Permitida floreira conforme artigo 14 desta Lei		Permitido ajardinamento conforme artigo 22 desta Lei.

Fonte: Lei das Calçadas – Goiânia, 2014

13. Extensão de ciclovia

Extensão total em km de ciclovias no bairro. A ciclovia é um espaço reservado exclusivamente para o tráfego de bicicletas, e permite mais segurança ao ciclista. A separação do espaço é feita através de meio físico como grades, muretas, blocos de concreto, dentre outros.

14. Extensão de Ciclofaixa

Extensão total em km de ciclofaixa no bairro. A separação na via é feita apenas com uma faixa pintada no chão. É indicado para locais com fluxo baixo de veículos, e se trata de uma solução mais barata que a ciclovia.

15. Extensão de ciclorota

Extensão total em km de ciclorota no bairro. De uso mais recente, o termo ciclorota (ou ciclo-rota) significa um caminho, sinalizado ou não, que represente a rota recomendada para o ciclista chegar onde deseja. Representa efetivamente um trajeto, não uma faixa da via ou um trecho segregado, embora parte ou toda a rota possa passar por ciclofaixas e ciclovias. Consiste num caminho que pode ou não ser sinalizado que represente uma determinada rota de melhor acesso ao destino onde o ciclista deseja ir.

O ciclista tem os mesmos direitos que veículos, motos, ônibus e caminhões garantidos pela Constituição e pelo Código Nacional de Trânsito para trafegar pelas vias de uso comum. No entanto, existem duas exceções a isso: vias que possuem um espaço exclusivo para ciclistas e vias onde há placas sinalizando a regulamentação de que esse modal é proibido, normalmente por serem vias expressas com altos limites de velocidade.

Onde não existem estas duas exceções, ou seja, a maior parte do espaço público de todas as cidades do Brasil, a lei relata que, quando não houver ciclovia ou ciclofaixa, a via deve ser compartilhada (art. 58 do Código de Trânsito Brasileiro). Os veículos maiores devem prezar pela segurança dos menores (art. 29 § 2º), respeitando sua presença na via e seu direito de utilizá-

la, guardando uma distância mínima de 1,5m ao ultrapassar as bicicletas (art. 201).

2.2.4 Disponibilidade de Transporte Coletivo

O transporte coletivo tem importância fundamental dentro do contexto geral do transporte urbano, na medida em que é essencial para a população de baixa renda e, ao mesmo tempo, uma alternativa importante a ser utilizada como estratégia para redução das viagens por automóvel, contribuindo para a diminuição dos congestionamentos, da poluição ambiental, dos acidentes de trânsito e do consumo de combustível.

De acordo com Ferraz e Torres (2004), são doze os fatores que influenciam na qualidade do transporte público urbano: acessibilidade, frequência de atendimento, tempo de viagem, lotação, confiabilidade, segurança, características dos veículos, características dos locais de parada, sistema de informações, conectividade, comportamento dos operadores e estado das vias.

Sob a ótica do usuário, a oferta do serviço de transporte coletivo é uma das principais características desse sistema, pois a oferta determina se o transporte coletivo pode ser considerado uma opção modal para os indivíduos locomoverem-se no interior da cidade, independentemente, da qualidade do serviço. Os usuários do transporte individual, podem utilizar seus veículos a qualquer tempo que necessitar, já os usuários do transporte coletivo estão limitados à áreas e horários específicos. Dessa forma, a opção pela utilização do sistema de transporte coletivo depende, fundamentalmente, da oferta do serviço.

As condições básicas determinantes para que o transporte coletivo se torne uma opção modal pode ser traduzida em três itens Sanches et al. (2007), quais sejam:

Cobertura do serviço: refere-se à proximidade espacial entre as origens e
os destinos das viagens em relação ao ponto de embarque e
desembarque, o que representa uma medida da densidade de linhas e
fornece uma medida da acessibilidade ao serviço na área urbana. Uma
maior cobertura do serviço implica maior acessibilidade e maior oferta de
transporte coletivo;

- Frequência: refere-se, sobretudo, ao número total de horas diárias de operação e à intensidade com que o serviço é oferecido (intervalo entre viagens). Um maior período de operação, assim como uma maior frequência, implica maior oferta de transporte coletivo; e.
- Capacidade de transporte do sistema: refere-se ao número total de passageiros que podem ser transportados com um nível de serviço adequado.

Esses três aspectos são, geralmente, utilizados para quantificar a oferta de transporte coletivo. Handy (1996a), em um estudo realizado para 6 bairros na cidade de Austin – Texas, EUA, determinou três indicadores de oferta de transporte coletivo bastante simples:

- Número de linhas de ônibus que atravessam o bairro;
- Número de linhas de ônibus que margeiam o bairro;
- % de residências no bairro que ficam a até 400m (distância máxima de caminhada) de um ponto de ônibus.

Nesse trabalho os dados relativos a disponibilidade de transporte coletivo, seguirá o mesmo adotado por Handy (1996a) e também utilizado em outras pesquisas como em Cervero (1996) e Handy (1996b).

2.3 ESTUDOS QUE RELACIONAM A FORMA URBANA E OS DESLOCAMENTOS NÃO MOTORIZADOS

Segundo Amancio (2005), a escolha individual do modo de transporte para a realização das atividades diárias tem relação com as características dos indivíduos (sexo, idade, renda, disponibilidade de ter um automóvel, etc.), características dos modais disponíveis (custo, tempo de viagem, conforto, etc.), aspectos da viagem (comprimento, motivo, horário, etc.), e da forma urbana (densidade urbana, diversidade uso do solo, desenho de vias, etc.).

A relação entre a forma urbana e os deslocamentos a pé já foram estudados em muitos trabalhos. Muitas dessas pesquisas relatam que determinados aspectos do ambiente físico apontam o aumento de viagens não-motorizadas. Neste caso as

viagens a pé e de bicicleta aumentam em locais que apresentam uso misto, calçadas contínuas e de largura adequada, vias bem conectadas, topografia menos acidentada, maior densidade populacional e de emprego, (CERVERO, 1996; FRANK e PIVO 1994; HANDY, 1996 a, b; AMANCIO, 2006).

Cervero (1996) executou uma pesquisa em 44 áreas metropolitanas dos EUA com população acima de um milhão de habitantes, analisando as viagens casa-trabalho. Os resultados apontaram que altas densidades e usos mistos do solo contribuem para a redução das viagens realizadas em veículos individuais, especialmente nas viagens mais curtas cujo principal motivo é o trabalho.

Handy (1996) investigou viagens realizadas pelo modo a pé a um determinado destino e viagens utilitárias para compras na região de Austin, Texas. Esta pesquisa segundo a autora buscou ir além de testar simplesmente a correlação entre forma urbana e comportamento de viagem, buscou definir um modelo mais compreensivo das escolhas realizadas pelos pedestres. A pesquisa apontou que a forma urbana influencia positivamente nas viagens não-motorizadas: onde há mix de usos (residências e empregos) há uma maior quantidade de viagens realizadas a pé; e onde não há oferta de calçadas e grande fluxo de veículos, há menor fluxo de pedestres. Segundo a autora, as análises realizadas também sugerem que certos aspectos da forma urbana têm um papel importante no encorajamento das caminhadas para um destino específico, mas têm pouca importância quando o objetivo é apenas passear. A autora conclui que a forma urbana parece ser um fator secundário para encorajar ou não as caminhadas.

Moudon *et al.* (1997) analisaram as cidades de Puget, Sound e Washington. A pesquisa analisou o número de deslocamentos realizados a pé em 12 bairros com características socioeconômicas semelhantes. Foi verificado que os locais onde não havia boa infraestrutura de parques e áreas verdes, além de calçadas iluminadas e arborizadas, não eram locais de boa atratividade para pedestres.

Amancio (2005) desenvolveu um estudo para a cidade de São Carlos, SP, onde foi analisado a existência da relação entre forma urbana e deslocamentos a pé. Foi examinado que nos bairros onde havia maior mistura de usos, permeabilidade das vias, oferta de transporte coletivo, variedade de moradias, parques e áreas abertas, haviam índices mais positivos de viagens a pé. Os resultados obtidos também apontaram que, tanto para viagens de 1,0 km quanto para viagens de 2,0 km, as

variáveis da forma urbana influenciam o comportamento do usuário na escolha por um modo de transporte, em especial, pelo modo a pé.

Mckibbin (2011), em seu artigo "A influência do ambiente construído sobre escolha do modo – evidência para viagens trabalho em Sydney", utilizou os cinco D's do ambiente construído - densidade, diversidade de uso do solo, qualidade dos espaços para pedestres, acessibilidade destino e distância para o trânsito - sugeridas por Ewing e Cervero (2010) como as variáveis do ambiente construído que podem reduzir o uso do automóvel em favor do transporte público, deslocamentos a pé e bicicleta. Neste artigo o autor analisou se os cinco D's do ambiente construído influenciam a escolha do modo de transporte nas viagens. Foram estudadas 1553 zonas de viagens em toda área metropolitana de Sydney, com ajuda de um GIS e análise de regressão multivariada. A pesquisa revelou que cada um dos cinco D's do ambiente construído tem diferentes níveis de influência na divisão modal de transporte para a viagemtrabalho. Todos foram considerados significativos, com exceção da qualidade dos espaços para pedestres. O autor sugere um estudo mais aprofundado deste fator, ou a utilização de um método diferente de medição, para um melhor resultado de significância. Os fatores do ambiente construído que parecem melhor influenciar a escolha do modo são densidade populacional e acessibilidade destino.

No estudo de Leslie et al. (2005) foram avaliados dois bairros com formas urbanas distintas – um com a malha tendente a regularidade (ortogonal – Norwood) e o outro irregular/orgânica (Hawthorndene), ambos em Adelaide (Austrália), mas com nível de renda e faixa etária semelhantes. Ressalta-se que Norwood apresenta caminhabilidade bastante alta com topografia sem muita variação e localização próxima ao centro da cidade; Hawthorndene, por sua vez, apresenta caminhabilidade baixa com topografia muito acidentada e longe do centro da cidade. Suas principais vias são muito movimentadas e com grande presença de mistura de usos, as menores, muitas vezes são estreitas. Para isso foi aplicado um questionário que levou em conta os atributos físicos dos ambientes de cada bairro que poderiam influenciar o deslocamento a pé, como: (a) densidade de interseções (conectividade viária), (b) densidade habitacional (relação entre o número de unidades habitacionais e área de terras com uso residencial) em cada CCD (Census Collection Districts – pequena unidade censitária) e (c) entropia (mistura de 5 usos - residencial, comercial, industrial, lazer e outros) por CCD.

Os autores verificaram que houve diferenças estatísticas significativas na classificação das características do ambiente (em termos de densidade residencial, mistura de uso do solo – acesso e diversidade – e conectividade da via) entre os residentes dos distintos bairros, ou seja, verificou-se que os residentes percebem os atributos dos bairros de forma distinta. Foi emblemático perceber que o bairro cuja malha é mais tendente a forma orgânica foi a considerada menos caminhável e a malha cujo desenho é mais ortogonal apresentou características mais altas de caminhabilidade, pois como o trabalho expressa (e o senso comum acredita), as malhas orgânicas apresentam características mais convidativas promovidas por suas vistas mais interessantes produzidas por meio das variações topográficas embutidas no sítio urbano. No entanto, possivelmente as distintas cotas de nível presentes na malha orgânica tornam-se um aspecto negativo ao concorrer com a estrutura plana da malha reticulada.

Allan (2001) analisa o andar a pé como um modo de transporte e examina algumas das características das cidades que incentivam as caminhadas. Em sua pesquisa foi utilizado índice de permeabilidade de caminhadas, como sendo uma ferramenta de planejamento muito útil na análise de como uma área urbana facilita as caminhadas a tornarem-se uma opção de transporte local. O autor cita a importância dos fatores de densidade urbana e sistema viário como pontos críticos na escolha pelo modo a pé e propõe relacionar a permeabilidade do tecido urbano a estes fatores. Segundo o autor, as caminhadas podem ser consideradas uma opção de modo de transporte a distâncias de aproximadamente 2 km, entre a origem e o destino da viagem em áreas onde o tecido urbano seja desobstruído, com padrão de sistema viário em forma de grelha e relativamente bem conectado. No entanto a realidade na maioria das cidades é de possuírem um tecido urbano que desestimula e restringe o acesso dos pedestres, por exemplo, com quadras de grandes extensões e vias mal conectadas.

Dill (2004) relata que os planejadores urbanos tradicionais recomendam que o desenho das vias nos bairros seja em forma de grelha, com quadras de pequena dimensão e com poucos *cul-de-sacs*. Estas recomendações retratam os bairros como sendo os mais amigáveis e propensos a promover os deslocamentos a pé. No entanto a autora propôs uma avaliação de uma série de medidas de conectividade de vias, com o propósito de como medir e em que níveis a conectividade é apropriada de forma a aumentar as viagens a pé. As medidas de conectividade são muito úteis em pesquisa e relacionadas a comportamento de viagem e forma urbana, onde é possível

constatar que uma rede viária bem conectada pode representar uma redução na distância entre as viagens e um maior número de rotas ou caminhos disponíveis ao usuário. Outro fator importante observado é a influência da conectividade viária nas políticas públicas que são capazes de estabelecer novos padrões de desenvolvimento urbano. Foram aplicadas quatro das medidas de conectividades de vias avaliadas na região metropolitana de Portland, são elas: densidade de interseções, densidades de vias, porcentagem de interseções conectadas, relação de segmento de via por interseção. A autora pôde concluir que apesar de correlatas as medidas não indicaram um mesmo nível de conectividade na área estudada, mas em geral, as áreas mais conectadas são no centro da cidade de Portland e no lado leste (leste do Rio de Willamette que corre norte-sul pelo meio da região). Estas são áreas que se desenvolveram em grande parte antes de 1950 e são constituídas por um padrão de via em forma de grelha.

Rodriguez e Joo (2004) examinaram, através de modelos multinomiais, a relação entre a escolha do modo de viagem e as características do ambiente físico, como topografia, densidade residencial, disponibilidade de calçadas e presença de rotas para ciclismo e caminhadas. Os dados necessários à realização desta pesquisa foram os de estudantes da Universidade da Carolina do Norte de modo a ilustrar a relação entre a escolha do modo e os atributos do meio físico cujo objetivo era de avaliar as características modais típicas de viagem, como tempo de viagem, tempo de acesso e custo. Portanto, de acordo com os resultados encontrados, a topografia e a disponibilidade de calçada são significativamente associadas à atratividade dos modos não motorizados.

Cervero e Kockelman (1997) estudaram 50 bairros da Baia de São Francisco, e analisaram como a densidade, diversidade, e desenho urbano influenciam as escolhas das viagens e descobriram que a intensidade de utilização (como por exemplo densidade de lojas de varejo, centro de atividades diversas, densidade populacional, boa acessibilidade, número de parque) foi associado com níveis mais altos de viagens não-motorizados. Cervero (2002) descobriu que variáveis do ambiente construído, tais como população, densidade de emprego e diversidade de uso do solo - todos medidos no nível TAZ, melhoram os modelos de modo de escolha e que o fator mais significativo do ambiente construído é a razão entre calçadas/milhas de estradas.

Em seu trabalho sobre a influência da forma urbana no comportamento de viagem das pessoas em Uberlândia – MG, DEUS (2008), estudou a relação existentes entre a

forma urbana de seis zonas de tráfego da cidade, e o seu sistema de transporte urbano, buscando definir como as características físicas de uma determinada região influenciam no comportamento de viagem das pessoas. O autor estudou a população geral da cidade, e não examinou especificamente o comportamento das viagens das crianças. Os dados levantados pelo autor, constam no Plano Diretor da cidade, e o mesmo, não realizou pesquisa de campo para levantamento das variáveis. As variáveis da forma urbana levantadas e definidas na revisão bibliográfica foram: densidade urbana; diversidade de usos do solo; qualidade dos espaços que favoreçam o transporte não motorizado; disponibilidade de transporte coletivo; desenho e conectividade das vias; e topografia da cidade. O autor usou um modelo do tipo logit multinomial para determinar o grau de influência da forma urbana sobre o comportamento de viagem. Inicialmente foram calibrados modelos utilizando apenas as variáveis sócio-econômicas dos viajantes e depois foram incluídas as variáveis que caracterizam a forma urbana. Os resultados obtidos indicaram que as variáveis da forma urbana não têm influência significativa no processo de escolha modal nas viagens realizadas dentro na cidade, não sendo determinantes para definição do modo de transporte a ser usado. As variáveis sócio-econômicas, em especial a renda, e o comprimento das viagens se mostraram como os fatores mais determinantes para a escolha do modo de transporte.

2.4 TÓPICOS CONCLUSIVOS

Nesse capítulo foi descrita a bibliografia referente as questões entre a relação da forma urbana e comportamento na escolha do modo de transporte. Foi apresentado também alguns conceitos de forma urbana, os quais apresentaram algumas variações, porém com o mesmo fundamento básico, ou seja, a forma urbana diz respeito a um conjunto de características físicas de um determinado ambiente, bem como a distribuição de atividades ao longo do espaço.

De acordo com o que foi investigado, a maior parte dos estudos indicam que existe influência da forma urbana sobre o comportamento de viagem, e que determinados aspectos da forma urbana podem contribuir para o aumento de viagens realizadas a pé e conseqüentemente a redução das viagens realizadas por automóveis. Nestes casos as viagens a pé e de bicicleta aumentam quando em locais que apresentam uso misto, calçadas contínuas e de largura adequada, vias bem conectadas, topografia menos acidentada, maior densidade populacional e de emprego.

Apesar de muitos estudos apontarem uma relação entre forma urbana e comportamento de viagem, outras pesquisas sobre o assunto indicam que a forma urbana não tem uma influência direta nas escolhas pessoais e apontam as características socio-econômicas como variáveis mais determinantes na escolha do modo de viagem. Segundo Deus (2008), as controvérsias podem surgir devido às próprias diferenças existentes entre cidades européias e cidades norte-americanas, que são as mais utilizadas como objetos de estudo, e também entre as cidades referidas e as cidades brasileiras. Dessa forma, fica evidente que os pesquisadores dos mais diversos países ainda precisam se aprofundar no assunto para se tentar chegar a resultados mais específicos que expliquem melhor a relação entre forma urbana e comportamento de viagem.

Com relação às viagens realizadas pelas crianças e sua relação com a forma urbana os estudos são ainda mais escassos. A maior parte destes estudos investigam especificamente as viagens dos adultos. Boarnet *et al.* (2005) e Stauton *et al.* (2003) demonstraram que mudanças no ambiente construído, tais como melhoria em calçadas e cruzamentos de ruas, podem incentivar os alunos a utilizarem o modo a pé até a escola. Essa escassez de trabalhos abordando crianças serviu de motivação para a definição do tema da presente pesquisa.

Viagens Escolares das Crianças

3.0 VIAGENS ESCOLARES DAS CRIANÇAS

3.1 COMPORTAMENTO DAS VIAGENS DAS CRIANÇAS ATÉ A ESCOLA

Como citado no capítulo anterior, o foco principal das pesquisas que relacionam comportamento de viagens e forma urbana concetraram-se nos adultos. No entanto, segundo Kitamura (1998), a presença de crianças em uma família, altera substanciamente o comportamento e os padrões de viagem de um domicilio. Dessa forma, o entendimento das viagens das crianças, se faz necessário para uma melhor compreensão das viagens dos adultos, haja visto, que os pais, especialmente as mães, estruturam suas viagens em torno das necessidades de seus filhos e coordenam seus próprios horários de trabalho, em função dos compromissos escolares de seus filhos.

Segundo dados ANTP (2011) as pessoas percorrem 422 bilhões de quilômetros por ano (cerca de 1,40 bilhões por dia), usando várias formas de deslocamento. A maior parte das distâncias é percorrida nos veículos de transporte público (57,1%), seguido pelos automóveis, nos quais as pessoas percorrem 31,4% das distâncias. Este dado mostra que a população urbana brasileira (municípios com mais de 60 mil habitantes) já é dependente de meios motorizados de transporte para realizar a maioria das suas atividades.

Ainda, no relatório ANTP (2011), existem dados agregados do número de deslocamentos realizados nos principais municipios brasileiros, número de veículos por municipio e o indice de mobilidade por municipio com mais de 60 mil habitantes. Porém, não existem dados ou estatísticas dos deslocamentos das crianças e por consequencia nenhum dado sobre a influência das viagens das crianças sobre a dos adultos.

As crianças pertencem a um grupo de usuários frágeis e dependentes, pois necessitam de um adulto para realizar seus deslocamentos. Como os adultos, as crianças precisam de transporte para atividades como educação, lazer e saúde. No entanto, diferentemente da maioria dos adultos, as crianças são, em grande parte dependente dos outros para fornecer esse transporte.

Segundo o Transporte Survey (NPTS), 69% de todas as viagens feitas por crianças de 5-15 anos em 2005 nos EUA foram realizadas em um veículo individual. As viagens

escolares, constituiram cerca de 26% das viagens feitas por crianças entre 5-9 anos de idade; apenas 10,5% dessas crianças utilizaram o modo a pé para o deslocamento, 52,8% utilizaram veículo privado; 30,2% ônibus escolar e 6,5% outros modos.

Nas várias pesquisas sobre o assunto, os pais citam longas distâncias e tráfego intenso como os principais obstáculos à sua criança se deslocar a pé ou de bicicleta até a escola, (DELLINGER E SATAUNTON, 2002; MCMILLAN, 2003; MCDONALD, 2005). Os pais ainda relatam que as ruas mais próximas da escola são também alguns dos locais mais perigosos para que as crianças se desloquem a pé ou de bicicleta, devido ao elevado volume de tráfego e ainda a falta de educação dos condutores de veículos nas proximidades dessas escolas.

Segundo Handy (1996a), a acessibilidade de infra-estrutura para pedestres (com foco em presença, qualidade, viagens, distâncias e opções de rota) estão associados com o comportamento de caminhar, em uma pesquisa sobre o comportamento de um adulto e forma urbana. No caso das viagens das crianças à escola, é possível que a enorme distância de casa à escola poderia ser uma das maiores barreiras para o deslocamento a pé ou de bicicleta (DIGUIUSEPI *et al.*, 1998).

A questão dos impactos da forma urbana nas viagens de uma criança até a escola é complexa. As pesquisas existentes e os modelos comportamentais não conseguem responder à questão por causa do foco limitado sobre crianças e transporte não motorizado. É necessario uma estrutura conceitual que englobe: 1) a questão comportamental das crianças individualmente, ao invés de agrupá-las ao comportamento de viagens motorizadas dos adultos (HILMAN *et al.*, 1973); e 2) uma abordagem que contemple a complexa estrutura das relações que existem na decisão sobre a viagem de uma criança para a escola.

Essa temática do deslocamento ativo de crianças e adolescentes até a escola vem sendo debatida e investigada em nível mundial, na última década. O uso da bicicleta e o deslocamento a pé nas viagens escolares surge como uma questão ligada aos transportes, no entanto, tem influência direta também com a saúde. Nas questões relacionadas aos transportes, surge como uma forma de melhoria nos congestionamentos e os problemas relacionados a ele, como emissão de gases poluentes. Nas questões de saúde colaboram no cumprimento das recomendações da Word Health Organization - WHO (2010) do nível diário (60 min) de atividade física, Tudor-Locke *et al.* (2001), bem como, na prevenção da obesidade infantil, Lu *et al.*,

(2015) e na promoção de comportamentos ativos e saudáveis na rotina de vida das crianças e adolescentes (PEREIRA *et al.*, 2014; PABAYO *et al*, 2011)

Segundo Matos *et al.* (2014), em uma pesquisa sobre transporte para escola com adolescentes, os dados do Inquérito Nacional de Saúde (1998-1999) apontam que, os adolescentes com mais de 15 anos de idade, passam 73% do tempo livre assistindo televisão, ou em outra atividade sedentária, como utilizando o computador. Aliado ao aumento das viagens realizadas por automóveis, e ao estilo de vida sedentário, ocorreu um aumento alarmante na obesidade infantil e, a nível mundial, estima-se que um terço dos jovens não seja suficientemente ativo para contribuir para o seu bemestar presente e futuro.

Esta pesquisa ampara-se na descrição do autor e procura utilizar o modelo desenvolvido por HANDY (1996 a) e ampliado em McMILLAN (2003). No entanto, como citado anteriormente, os dados de transportes foram inseridos no modelo desta tese, em uma reformulação do modelo proposto por McMillan. Dessa forma a teoria apresentada a seguir, segue o mesmo raciocinio de McMillan, pois é a base para formulação do modelo final.

3.2 QUESTÃO MULTIDISPLINAR

Como já relatado anteriormente o comportamento de viagem das crianças ainda é um tema pouco compreendido pelos profissionais tanto do planejamento de transportes, quanto dos relacionados com a saúde física. No entanto, a importância do assunto se estende para além das fronteiras disciplinares tradicionais de planejamento. A viagem da criança para a escola, é tanto complexa quanto importante, e analisar o tema de uma forma multidisciplinar ajuda a definir seu significado e entender de que maneira a forma urbana influencia a escolha do modo de viagem da criança até a escola.

3.2.1 Transporte

Em pesquisas que estudam o deslocamento das crianças e modo de escolha do veículo, os pais relatam que os principais empecilhos a sua criança se deslocar a pé ou de bicicleta até a escola estão a distância e o intenso tráfego de veículos.

O cuidado e proteção dos pais em relação ao deslocamento ativo do seu filho até a escola, afetam o tráfego nas proximidades das escolas e impactuam de maneira

importante a rotina dos pais, na forma de incrementos de viagens e limitação dos horários de trabalho e outras atividades, como compras ou lazer. Apesar, de uma mudança no comportamento em relação aos cuidados com os filhos nas famílias (pais e mães são responsáveis pelas atividades dos filhos, inclusive a escola), as mães tendem a fazer um número maior de viagens até a escola para deixar e buscar a criança, em relação aos pais. (ROSENBLOOM, 1987).

Segundo Bradshaw (2001) os hábitos formados mais cedo são difíceis de romper. Por isso, crianças que fazem a maioria de suas viagens de carro, quando crescem tendem a continuar com esse comportamento na idade adulta e podem ser mais relutantes em viajar por modos alternativos de transporte. Apesar de haver uma vasta literatura sobre o assunto, porém envolvendo os adultos, ainda existem poucas pesquisas envolvendo as crianças e que apoiem tal hipótese.

3.3.2 Saúde

Atropelamentos

A morte de crianças no trânsito quer por atropelamento ou bicicleta causa um grande impacto na sociedade. Segundo dados do Departamento de Informática do Sistema Único de Saúde - DATASUS (2014) a cada morte de uma criança de 0 a 9 anos, outras quatro ficam com sequelas permanentes que irão gerar, provavelmente, consequências emocionais, sociais e financeiras a essa família e à sociedade.

Os acidentes de trânsito são a primeira maior causa de mortes entre crianças no Brasil entre 5-9 anos de idade. Ainda, segundo dados do DATASUS (2014), entre 0-9 anos aconteceram 3.142 mortes nesta faixa etária, e mais de 75 mil hospitalizações de meninos e meninas, o que caracteriza o acidente como um grave problema de saúde pública. Os acidentes de trânsito, que incluem atropelamentos, passageiros de veículos, motos e bicicletas, representaram 33% destas mortes, seguidos de afogamento (23%), sufocação (23%) queimaduras (7%), quedas (6%) e outros (6%).

Segundo Vasconcellos (2000) pode-se citar como fatores gerais causadores do alto número de acidentes viários, o acelerado processo de urbanização brasileiro, o crescimento populacional expressivo, o padrão de ocupação desordenado do solo e o aumento extremo no número de veículos no trânsito e que segundo Cardoso (1999), compreender os eventos e fatores que influenciam nas ocorrências de acidentes de tráfego é de fundamental importância para adoção de medidas que visem à redução desses acidentes no trânsito.

Diminuir a velocidade nas ruas para reduzir a gravidade de acidentes de trânsito é uma prática adotada em muitos países e que está começando a ganhar espaço nas cidades brasileiras. Em julho de 2015 a prefeitura da cidade de São Paulo baixou, a velocidade máxima nas marginais Tietê e Pinheiros. Nas pistas que permitiam 90 km/h, agora as placas indicam 70 km/h, onde era 70 km/h passou para 50 km/h. Um ano após a redução da velocidade nessas marginais, dados da Companhia de Engenharia de Tráfego (CET) em 2015, mostraram que a quantidade de acidentes com vítimas e a lentidão nas vias apresentaram queda de 38,5% e 8,7%, respectivamente.

Estima-se que a probabilidade de um pedestre vir a óbito quando atingido por um veículo a 32 km/h é de 5%, esse percentual sofre um incremento para 40% com veículos viajando a 48 km/h, 80% a 64 km/h, e quase 100% para veículos trafegando com velocidades acima de 80 km/h, Pasanen (1993). A redução da velocidade para os veículos se deslocando em zonas escolares, seria uma alternativa que a administração pública poderia utilizar como instrumento na redução dos acidentes com crianças que utilizam o modo a pé ou bicicleta para irem até a escola.

A inatividade física / Obesidade

Como citado anteriormente, o deslocamento diário das pessoas pode contribuir para um estilo de vida mais ativo. Ir a pé ou bicicleta até a escola ou trabalho têm demonstrado associações positivas na saúde das pessoas em geral, (OLGIVIE *et al.,* 2004). No entanto é crescente, principalmente em áreas urbanas o número de pessoas que se deslocam de forma passiva.

Segundo (NATIONWIDE PERSONAL TRANSPORTATION SURVEY – NPTS, 2007) apud (SILVA, 2007) nos Estados Unidos, entre o período de 1969 a 1995, o aumento do número de veículos particulares foi seis vezes maior do que o da população americana. Entre as metas traçadas pelo Department of Health and Human Services no relatório para Health People 2010 destaca-se o aumento de 31 para 50% no uso do deslocamento ativo pelos estudantes que moram a menos de 1,6 km da escola.

A Organização Mundial de Saúde (OMS) aponta a obesidade como um dos maiores problemas de saúde pública no mundo. A projeção é que em 2025 o número de crianças com sobrepeso no mundo pode chegar a 75 milhões. No Brasil, o aumento do número de obesos na idade infantil, também é crescente e segundo dados do IBGE (2009), 15% das crianças brasileiras estão com sobrepeso. O relatório ainda indica

que em 1975 o percentual de crianças obesas no Brasil entre 5-9 anos era de 4,7%. Esse percentual aumentou para 28,4 % em 2009.

Pesquisas realizadas entre a comunidade de saúde relatam uma relação causal entre sedentarismo e saúde corporal. O sedentarismo está associado ao risco aumentado de doenças cardiovasculares e outras doenças crônicas e, devido a recente preocupação com o aumento na prevalência de obesidade em crianças e adolescentes, a promoção da atividade física nestas populações tornou-se uma prioridade para a saúde pública.

No Brasil ainda são escassos os estudos que abordem deslocamentos ativos das crianças até a escola, e quais são os ganhos para saúde utilizando esse modo de transporte. Algumas evidências relatam que escolares que se deslocavam ativamente para a escola, demonstraram excesso de peso e de gordura corporal menor em relação aos escolares conduzidos de carro, Silva e Lopes (2008), assim como o estudo de Souza *et al.* (2010), que mostrou uma relação significativa entre inatividade física e sobrepeso.

Pode-se observar que as questões relacionadas a forma urbana e a viagem das crianças para a escola é complexa. Além de ser necessário o tratamento de uma forma multidisciplinar as pesquisas existentes e os modelos de comportamento de viagem e atividade física ainda são limitadas as viagens dos adultos. Dessa forma se faz necessário um modelo que aborde: o comportamento de viagem exclusivamente para as crianças e que consiga detalhar as relações que existem na decisão da viagem da criança até a escola.

3.3 FATORES QUE INFLUENCIAM A VIAGEM DAS CRIANÇAS ATÉ A ESCOLA

A figura 3.1 mostra a complexa relação entre a forma urbana e a viagem das crianças até a escola. O modelo foi proposto por McMillan (2003) e se mostrou mais adequado, principalmente por:

- 1 Identificar o decisor sobre o comportamento das viagens das crianças;
- 2 Identificar os fatores que podem influenciar na tomada de decisão da viagem da criança até a escola;
- 3 Descrever como esses fatores influenciam a relação entre a forma urbana e as viagens escolares.

O modelo supõe que até uma certa idade da vida de uma criança, a decisão final sobre a escolha do modo de veículo até a escola é do pai e não dessa criança. Seguindo essa lógica, a tomada de decisão dos pais pode ser considerada como uma variável intermediária ou mediadora do comportamento de viagem da criança. No item 3.3.1 os fatores mediadores estão conceituados.

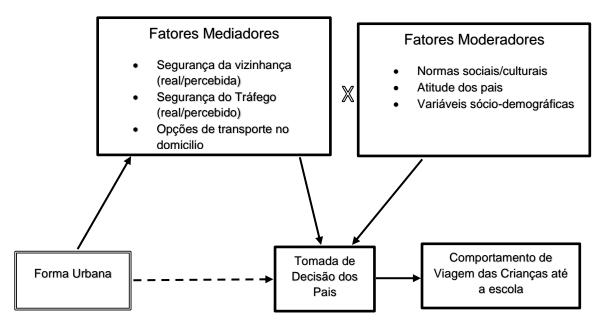


Figura 3.1 - Diagrama do modelo conceitual do comportamento de viagem de uma criança até a escola. Fonte: McMILLAN, 2003

Nesse modelo proposto por McMillan (2003) as setas sólidas indicam a hipótese de relações diretas; setas pontilhadas destaca a hipótese de relações indiretas; X indica a interação entre fatores mediadores e fatores moderadores. O modelo pressupõe ainda que até uma certa idade, a decisão final sobre o modo de viagem de uma criança até a escola é dos pais ou cuidadores. Dessa forma essa decisão não está limitada aos horários ou restrições das crianças, mas é influenciada sobremaneira pela determinação dos mesmos. Assim a tomada de decisão dos pais pode ser vista como uma variável intermediária entre a forma urbana e o comportamento de viagem da criança.

A tomada de decisão dos pais em si pode ser influenciada por outras variáveis intervenientes, entretanto elementos da forma urbana, tais como comprimento de quadra ou iluminação pública pode influenciar fatores psicossociais (percepções de segurança do bairro e/ou de trânsito), pois uma rua mal iluminada, sugere aos pais risco de assalto ou até mesmo atropelamento devido à baixa luminosidade. Que por sua vez pode influenciar a tomada de decisão dos pais sobre como uma criança

poderá viajar até a escola (criando "uma série de mediadores em cascata" que intervêm e são causalmente relacionados em sequência entre a forma urbana e as viagens de uma criança até a escola). São esses fatores que trazem a natureza e a forma da relação de como a forma urbana impacta a viagem de uma criança até a escola.

O modelo acima proposto por McMillan (2003) tem a sua estrutura semelhante à de Handy (1996b), quando relaciona a motivação para caminhar e a forma urbana, exceto a ordem causal, que é inversa. O modelo de Handy sugere que, dada a motivação para caminhar, a forma urbana é um fator externo que pode permitir ou impedir a caminhada real. O modelo de Macmillan sugere, por sua vez, que é a tomada de decisão dos pais em relação as características do ambiente físico e sua atuação sobre os diferentes modos de transporte, que ditam como a criança se deslocará até a escola.

Ainda sobre o modelo de McMillan, o mesmo sugere que não são apenas algumas intervenções na forma urbana que vão aumentar as viagens das crianças a pé/bicicleta/ônibus até a escola. Por exemplo, uma calçada pode não ser o motivo principal para as baixas taxas de deslocamento a pé; há de se abordar preocupações subjacentes que os pais têm sobre as viagens de uma criança até a escola - como a segurança do tráfego. Segundo a autora há de se realizar melhorias em alguns elementos dos fatores mediadores identificados ao longo do caminho de decisão.

Outros fatores que não são da forma urbana, mas que também influenciam a tomada de decisão dos pais, são as variáveis moderadoras (renda familiar, idade das crianças, normas culturais, etc), que aparentemente não tem relação alguma com a forma urbana, no entanto aparecem no modelo de McMILLAN como agentes influenciadoras na decisão final. Como por exemplo, a tomada de decisão dos pais quanto ao modo de viagem até a escola pode variar com o sexo da criança, e o mesmo não se sentir seguro a incentivar o filho a andar até a escola por se tratar do sexo feminino.

3.3.1 – Fatores Mediadores

Uma dada variável é dita mediadora quando representa a relação entre a variável de previsão e o critério (BARON e KENNY, 1986, p.1176). Neste caso, a forma urbana (por exemplo, calçadas) é a variável de previsão e o comportamento de viagem das crianças é a variável critério. O conceito de mediação implica suposição de relacionamentos entre as variáveis envolvidas, (ABBAD E TORRES, 2002). Assim a

percepção de segurança do tráfego pode influenciar os pais a não incentivar seus filhos a caminhada por medo de atropelamentos. Os fatores mediadores relacionados na pesquisa realizada com os pais dos alunos do ensino fundamental de Goiânia foram: Segurança do bairro, Segurança do tráfego e Opções de transporte no domicílio.

• Segurança do bairro

Alguns elementos do desenho urbano, por sua aparência e falta de segurança, podem causar nos pais sensação de risco às crianças se deslocarem a pé/bicicleta/ônibus. Segundo McMillan (2003) duas pesquisas diferentes DiGuiseppi *et al.* (1998) e Eichelberger et *al.* (1990), realizadas com pais de crianças entre 2 a 9 anos, revelou que os mesmos estavam mais preocupados com sequestros ou abordagens de estranhos aos filhos do que um dano físico causado por acidente; esse medo de sequestro foi um forte influenciador das viagens de carro até a escola

Da mesma forma, o estado de conservação dos equipamentos urbanos pode causar sensação de risco ou perigo aos pais, e pode levar os mesmos a restringir determinadas viagens dos filhos. Ruas degradadas, com pouca iluminação e baixa vigilância, promovem sensação de medo e perigo aos moradores de um determinado bairro.

Segundo McDonald *et al.* (2011) as atitudes dos pais também influenciam a forma do deslocamento das crianças para cumprir suas atividades. Quando os pais constatam menos barreiras ou mais benefícios potenciais como segurança e acessibilidade, as suas crianças são mais propensos a se deslocarem a pé ou de bicicleta até a escola.

Segurança do Tráfego

Da mesma forma, o tráfego pode influenciar o modo de viagem das crianças. Ruas com elevados volumes de tráfego podem constituir em maior risco de lesões e morte por atropelamentos, por exemplo. Se o volume de tráfego é alto nas imediações das escolas e bairros residenciais, os pais podem se sentir desencorajados a deixar seus filhos a andarem a pé ou de bicicleta para realizar qualquer tipo de viagem, por lazer ou por atividades escolares.

O sentimento de medo que os pais possuem do tráfego de veículos é uma medida difícil de ser mensurada, e nem sempre serve de previsão e esclarece as viagens feitas de carro até a escola. No entanto, DIGuiseppi *et al.* (1998) afirma que percepções de tráfego pesado tem efeitos positivos sobre o comportamento de viagem dos adultos, significando até um impedimento sobre os deslocamentos a pé. A influência da segurança de tráfego na tomada de decisão dos pais pode variar segundo o controle que os mesmos exercem sobre o comportamento da criança, e para alguns destes, a presença de outros adultos caminhando até a escola, pode influenciar sua própria percepção sobre o tráfego, e um caminho quando percorrido sozinho é perigoso, mas quando outros o fazem, já não lhe parece tão arriscado.

Opções de transporte no domicílio

A posse de automóvel pelas famílias, pode afetar a decisão sobre a viagem de uma criança, e segundo Kitamura *et al.* (1997) está positivamente correlacionada com viagens de automóvel, e quanto maior o número de veículos no domicilio menor será a probabilidade dos deslocamentos a pé/bicicleta/ônibus.

Ainda em Kitamura *et al.* (1997) distâncias menores entre pontos comerciais, serviços de lazer, entre outros, tem uma correlação positiva com o número de viagens a pé e não motorizadas. A presença e a continuidade das calçadas também facilita a atividade de caminhada. Segundo Mcmillan (2003) *apud* Diguiseppi *et al.* (1998) o acesso afeta as decisões dos pais sobre a viagem de seus filhos para a escola e a distância física entre a casa e a escola limita as opções de transportes disponíveis.

Ainda segundo McMillan (2003) a presença de ciclovias, passagens para pedestres e presença de lombadas próximos as escolas influencia positivamente a viagem das crianças para a escola a pé ou de bicicleta. As crianças que vivem em áreas de alta densidade (ou áreas de maior acessibilidade aos centros de atividades) são menos propensos a ir de ônibus para a escola e mais propício a usar os modos não motorizados, (McDONALD, 2005).

3.3.2 – Fatores Moderadores

Um fator moderador é uma variável qualitativa ou quantitativa que afeta a direção e/ou a força da relação entre uma variável independente ou preditor e uma variável

dependente ou critério, (BARON E KENN, 1986). Uma variável moderadora relacionase com determinados fatores circunstanciais que podem aparecer no meio de uma investigação, passando por vezes desapercebidos, no entanto, causam desvios, moderando ou alterando os resultados. A variável moderadora apresenta-se geralmente, ligada a variável independente, reforçando ou inibindo a ação desta.

Os fatores moderadores relacionados nesta pesquisa realizada com os pais dos alunos do ensino fundamental de Goiânia foram: Atitude dos Pais e Variáveis Sócio demográfica.

Atitude dos pais

Em uma pesquisa em que relacionou uso do solo, transporte e atitude, Kitamura *et al.* (1997) verificaram que as atitudes e opiniões de um indivíduo (pró-meio-ambiente, pró-trânsito, pró-mobilidade automotiva), foi um forte preditor no comportamento de viagens, talvez mais forte que as questões do uso e ocupação do solo. Apesar dessa pesquisa não contemplar as viagens das crianças diretamente, os resultados sugerem que a atitude de um pai pode influenciar não só a sua própria decisão de viagem, mas também a de seu filho. Em contrapartida, as atitudes das crianças podem influenciar também as decisões dos pais, sobre o modo de viagem até a escola. Se uma criança não quer ir a pé até a escola, por um motivo qualquer, os pais podem ser persuadidos a conduzir esse filho por outros modos.

Características sócio demográficas

Outras variáveis que influenciam o modo como os pais escolhem o modo de transporte até a escola para seus filhos é a idade, sexo e número de filhos no domicilio. Famílias com muitos filhos ou crianças menores em pré-escola, podem influenciar viagens de automóveis para a escola, atividade recreativa e cuidados médicos.

Estudos realizados por Liu *et al.* (2012) sobre o comportamento dos pais na condução de seus filhos até a escola relatam que as mães tem uma tendência maior do que os pais de acompanhar suas crianças até a escola. Uma explicação para tal fenômeno baseia-se no fato de que este é um papel tradicional de gênero das mulheres na divisão do trabalho doméstico.

Segundo Yalargada e Srinivasan (2008) várias características do agregado familiar também afetam o modo de viagem das crianças até a escola. Em geral, estudantes de

famílias de baixa renda e cujas famílias não possuam um carro, são mais propensos a se deslocarem a pé ou de bicicleta para a escola, enquanto estudantes de famílias de alta renda e cujas famílias possuem mais carros são mais propensos de serem conduzidos de veículo individual até a escola. À medida que aumenta a idade das crianças, suas atividades diárias tornam-se mais complexas, resultando em uma maior restrição sobre (muitas vezes) as viagens dos pais que trabalham.

De acordo com os tópicos mencionados acima pôde-se perceber que as análises sobre comportamento de viagem é complexa e dependem da inserção de variáveis que segundo Acker (2008) devem referenciar: (1) características espaciais do ambiente urbano; (2) características socioeconômicas; (3) características sociopsicológicas (atitudes) dos indivíduos e domicilios. Nessa tese serão estudadas variáveis que devem fazer referência aos três tópicos.

3.4 – ESTUDOS QUE RELACIONAM DESLOCAMENTO DAS CRIANÇAS E FORMA URBANA

Os resultados do trabalho "Forma Urbana e deslocamentos a pé: Modelando e Testando Decisões dos Pais sobre a Viagem das Crianças" desenvolvido por McMillan (2003) revelaram a hipótese que a forma urbana é importante, no entanto não é o único fator que influencia na escolha do modo de viagem até a escola. Outros fatores, tais como; a percepção de segurança na vizinhança e no trânsito; a opção de transporte familiar e as normas sócioculturais, se mostraram importantes influenciadores na tomada de decisão dos pais. O modelo utilizado foi um Logit binomial, cujo objetivo foi conhecer a probabilidade que a forma urbana e também outros fatores podem afetar o deslocamento das crianças até a escola.

O modelo afirma que o deslocamento das crianças é afetado por diversos fatores incluindo a forma urbana, no entanto, as probabilidade indicaram que fatores moderadores e mediadores (segurança da vizinhança, segurança do tráfego, opções de transporte no domicilio, normas sociais/ culturais, atitude dos pais, variáveis sócioeconômicas) são maiores que o da forma urbana.

Outro trabalho que estudou como a forma urbana influencia as viagens das crianças até a escola foi o de McDonald (2005). Em seu modelo a autora buscou responder três hipóteses: 1) Quais são os padrões atuais de viagens das crianças; 2) Quais os fatores que têm a maior influência sobre a escolha do modo de viagem infantil até a escola, principalmente o modo a pé; e 3) Como o planejamento do uso do solo pode

afetar a caminhada até a escola. O objetivo da pesquisa foi identificar os fatores que tem uma forte relação sobre a escolha do modo, incluindo os efeitos do uso do solo, sobre a decisão de caminhar até a escola. Foi utilizado um modelo logit multinomial para testar a probabilidade das crianças viajarem a pé, ônibus escolar e carro individual, sendo influenciadas por variáveis como tempo de viagem, características do individuo (idade, sexo, etc), renda, e variáveis ligadas ao uso do solo como densidade e diversidade de usos.

A análise do modelo identificou a distribuição espacial dos estudantes e escolas como a principal razão para as baixas taxas de caminhada. A autora relata que em 1969 nos EUA, 45% dos alunos da escola viviam a menos de uma milha da escola e atualmente menos de 24% moram a esta distância e afirma que o fato de a maioria das crianças não viverem à uma distância satisfatória de suas escolas é o principal fator para o aumento do uso de automóveis nas viagens escolares.

Outro interesse substancial dos pesquisadores sobre as viagens das crianças está no padrão e engajamento das atividades extra-curriculares. Vários estudos examinaram as taxas de participação das crianças em atividades pós-escola. Por exemplo, Huebnere Mancini (2003) analisou os padrões de 509 estudantes entre 9 e 12 anos de idade e descobriu que 26% dos observados não participam de quaisquer atividades extra-curriculares depois da escola e 75% gastam seus tempo em clubes não-escolares. Já Hofferth *et al.* (1991) centrou-se em padrões de atividades de crianças menores, entre 5 e 12 anos e as taxas de participação encontradas foi de apenas 12% dos 5 aos 9 anos de idade e 23% dos 10 aos 12 anos de idade participantes em atividades após a escola.

Posner e Vandell (1997) examinaram os padrões de atividade de 194 crianças brancas e negras entre 3 e 5 anos e observou que 20% do tempo de pós-escola, foi gasto assistindo televisão, e apenas 4% foi gasto em esportes. Shann (2001) pesquisou 1.583 crianças no centro da cidade e descobriu que mais de 75% destas não participam em qualquer programa pós-escola. Por outro lado , cerca de 90% assistia televisão em um modo passivo. A participação em atividades extra-curriculares estruturados é substancialmente maior na Suécia, e mais de 75% dos meninos e meninas relataram envolvimento em tais atividades, (MAHONEY E STATTIN, 2000).

Esses estudos também observaram que há fatores sócio-econômicos e demográficos que influenciam as crianças em atividades extra-curriculares. O envolvimento dos pais, status sócio-econômico, nível de escolaridade e morar em uma casa com pais

casados contribuiu positivamente para a participação em atividades extra-curriculares (HUEBNERE MANCINI, 2003). As diferenças de gênero também contribuem e segundo essa pesquisa os meninos em geral participam mais, em atividades esportivas, do que as meninas.

Idade e sexo também são importantes na determinação de viagem para crianças. Em uma pesquisa sobre a influência de duas variáveis, idade e sexo, sobre a modo de viagem das crianças Hillman *et al.* (1990) mostrou que meninos de seis a onze são duas vezes mais propensos a se deslocar sozinho até a escola, que as meninas da mesma idade. A mesma pesquisa foi realizada em Toronto por Vliet (1983), e mostrou que os meninos que residiam em subúrbios viajavam distâncias mais longas que as meninas. Curiosamente, esta relação só se realizou nos subúrbios, e as crianças da cidade, não apresentaram essa diferença na variável distância de viajem.

Pesquisas como as de Diguiseppi *et al.*, (1998) e Bradshaw e Atkins (1996), afirmam que a posse de um veículo automotor tornou mais fácil aos pais deixarem seus filhos na escola. Os dados destas pesquisas revelaram que 87% dos estudantes de famílias sem carros caminhavam até a escola, por outro lado apenas 36% dos estudantes com famílias que possuiam 2 ou mais carros, se deslocavam a pé até a escola.

No Brasil existem inúmeros estudos acerca dos benefícios para a saúde ocasionados pela prática de atividade física na infância e adolescência, porém, poucos relacionam deslocamentos ativos e viagens escolares. Em um estudo sobre deslocamento ativo em adolescentes escolares do nono ano do ensino fundamental da rede municipal de Paulista (PE), Silva et al. (2014), demonstraram que dentre os escolares, 57,6% se deslocavam a pé ou de bicicleta à escola. A frequência do deslocamento ativo foi superior em escolares residentes na área rural e nos que apresentaram mãe com escolaridade superior a oito anos de estudos, o que demonstrou uma associação significativa destas variáveis com o deslocamento.

Ainda sobre deslocamento ativo até a escola, o trabalho de Silva et al. (2007), desenvolvido entre estudantes do ensino fundamental, de 7 a 12 anos de idade, na cidade de João Pessoa — Paraíba, mostrou que os estudantes mais jovens e de escolas privadas se deslocavam mais de forma passiva à escola do que os mais velhos e de escolas públicas, e que, metade dos estudantes realizavam atividades sedentárias no tempo livre, como assistir televisão ou jogar vídeo game. A pesquisa levantou que quanto maior o tempo gasto com o deslocamento de casa até a escola

menor o número de estudantes que viajavam de forma ativa. Os pesquisadores sugerem que a infra-estrutura da cidade, localização das escolas, existência de ciclovias, segurança e condição econômica, têm influenciado a forma de deslocamento à escola. Também se faz necessário reduzir o tempo dedicado à prática de atividades sedentárias no período fora da escola e estimular a prática de esporte, principalmente nos escolares mais jovens e entre as meninas, já que as atividades sedentárias foram mais freqüentes entre o sexo feminino, escolares de 7-9 anos de idade e entre os estudantes de escolas públicas, enquanto que, a prática de esportes foi maior entre escolares do sexo masculino, faixa etária de 10-12 anos e estudantes de escolas públicas.

Em seu trabalho sobre Inatividade Física no deslocamento e comportamento sedentário em estudantes do ensino médio de Santa Catarina Silva (2012), estudou os estudantes entre 2001 e 2011 e os resultados demonstraram uma prevalência de inatividade física no deslocamento à escola que permaneceu estável de 2001 (43,7%) a 2011 (48,7%). Houve estabilidade no uso do transporte público (de 37,3% para 36,1%), enquanto o uso de carro/moto aumentou de forma significativa de 6,4% para 12,6%. Após uma década, observou-se aumento na prevalência dos fisicamente inativos no deslocamento. A autora utilizou regressão logística multinomial para confrontar o tipo de deslocamento. Segundo resposta do modelo, o uso de ônibus versus a pé/bicicleta foi menos provável nos jovens de áreas urbanas do que nos estudantes de áreas rurais, em famílias com renda intermediária ou alta comparados àqueles de famílias de baixa renda tiveram maior chance de se deslocar de carro/moto do que a pé/bicicleta.

3.5 TÓPICOS CONCLUSIVOS

Nesse capítulo foi relatado alguns trabalhos referenciais sobre as características das viagens das crianças. Pode-se observar um consenso entre os pesquisadores sobre o tema que o comportamento das viagens das crianças dever ser tratado de forma individual, ao invés de agrupá-las ao comportamento de viagens motorizadas dos adultos, em uma abordagem que contemple a complexa estrutura das relações que existem na decisão sobre a viagem de uma criança para a escola.

As pesquisas que tratam sobre o deslocamento das crianças até a escola iniciaram com uma preocupação latente do mundo do século XXI – o número crescente da obesidade infantil, problemas cardíacos e inatividade física entre as crianças. Esse

problema também afetou as questões ligadas aos transportes, pois observou-se, em alguns países como os EUA e alguns países da Europa - após algumas décadas o modo de viagem das crianças foi drasticamente alterado, e o deslocamento a pé/bicicleta foi substituido pelo individual motorizado. A forma de uma criança se deslocar trata-se então, de uma questão multidisplinar já que os deslocamentos ativos (e aqui trata-se dos escolares, por ser o principal deslocamento realizado pelas crianças), pode melhorar os congestionamentos e os problemas relacionadaos a ele, como emissão de gases poluentes e ainda na saúde colaboram na prevenção da obesidade infantil e disposição das crianças para realização de suas atividades diárias.

Foi relatado também que existem muitas características do desenho urbano que afetam o deslocamento a pé/bicicleta até a escola, no entanto, outros fatores que não são da forma urbana, também influenciam a escolha do modo até escola (fatores psico-sociais). Esses fatores aparecem no modelo desenvolvido po McMillan (2003) como mediadores e moderadores, e que serviu de referência para este trabalho. O modelo pressupõe que até uma certa idade, a decisão final sobre o modo de viagem de uma criança até a escola é dos pais ou cuidadores, e dessa forma a tomada de decisão dos pais pode ser vista como uma variável intermediária ou mediadora entre a forma urbana e o comportamento de viagem da criança.

O conceito de uma variável mediadora está ligado à uma suposição de relacionamento entre as variáveis envolvidas, e as selecionadas para este trabalho foram: segurança do bairro, segurança do tráfego e opção de transporte no domicílio. A percepção que um pai tem sobre a segurança do tráfego, por exemplo, pode influenciar a escolha do modo do filho se deslocar até a escola, e mesmo não sendo uma questão da forma urbana, alto volume de tráfego, sugere ao cuidador uma sensação de rua perigosa e, portanto, sem condição adequada para o deslocamento a pé/bicicleta por crianças. A variável moderadora relaciona-se com determinados fatores circunstanciais que podem aparecer no meio de uma investigação e muitas vezes passam desapercebidos, no entanto, causam desvios, moderando ou alterando os resultados. As variáveis moderadoras selecionadas para este trabalho foram: Atitude dos Pais e Variáveis Sócio demográfica. Por exemplo, o número de filhos em um domicílio, não é uma questão da forma urbana, no entanto, podem modificar como os pais decidem se deslocar até a escola.

Nos trabalhos que relacionam forma urbana e deslocamento escolares podem ser destacados dois trabalhos, que estudaram as questões do desenho urbano e viagens das crianças: 1 - McMillan (2003) – cujo modelo evidenciou que a probabilidade do deslocamento das crianças ser afetado por outros fatores é maior que os da forma urbana; McDonald (2005) – identificou o fato que a maioria das crianças não viverem à uma distância satisfatória de suas escolas é o principal fator para o aumento do uso de automóveis nas viagens escolares.

Os trabalhos que abordam deslocamentos a pé/bicicleta/ônibus, em sua maioria, revelam uma relação entre a forma urbana e esses deslocamentos. No entanto quando se trata de viagem escolar, essa relação se revela mais modesta. Ainda há muito o que se pesquisar, principalmente as questões ligadas ao comportamento e seus fatores influentes. Avançar na discussão sobre a relação entre forma urbana e deslocamentos das crianças em uma cidade brasileira, visa contribuir para uma melhor prática e intervenção de políticas públicas.

No Brasil não existem pesquisas que relacionam forma urbana e deslocamento de crianças até a escola. Existem um número de pesquisas sobre deslocamento ativo de crianças até a escola, no entanto, são pesquisas sobre saúde e obesidade infantil, e não contemplam a forma urbana como hipótese para os deslocamentos a pé/bicicleta/ônibus até a escola, fato esse que reforça a originalidade e relevância desta Tese.

Modelos para Análise Comportamental

4.0 MODELOS PARA ANÁLISE COMPORTAMENTAL

4.1 BASES TEÓRICAS DOS MODELOS

Um dos argumentos utilizados nos modelos comportamental é a de que o indivíduo estabelece subjetiva e objetivamente um elenco de opções ou alternativas na ordem de sua preferência, e escolhe sempre a que mais lhe agrada, dado um conjunto de inclinações (gastos) e dados as condicionantes de ordem econômico-financeira e de oportunidades disponíveis (NOVAES, 1986). A rápida expansão dos centros urbanos impõe à população uma série de escolhas para realizar seus deslocamentos diários, e a escolha do modo de transporte é um deles.

Buscando-se prever a opção dos usuários por um modo de transporte utilizam-se, comumente, os modelos comportamentais de escolha discreta. Estes modelos pressupõe a opção modal do indivíduo com base na agregação de diversas variáveis explicativas. As variáveis explicativas buscam definir as alternativas de modos de transporte disponíveis ao indivíduo para realização da viagem. Quando na definição do modelo estatístico que melhor explica o problema a ser estudado define-se a estrutura que melhor se ajusta as características do problema (modelo binomial ou multinomial). Define-se um conjunto de variáveis explicativas a serem utilizadas e, por último, especifica-se o conjunto de escolhas individuais que representam as alternativas disponíveis ao indivíduo para a realização da viagem.

No que tange aos fatores que influenciam o indivíduo a optar por um ou outro modo de transporte, têm-se uma diversidade de variáveis que podem ser citadas como: a velocidade, o conforto, a conveniência, o custo, a confiabilidade de cada modo, o comprimento e o motivo da viagem, as características socioeconômicas do indivíduo que irá realizar a viagem, etc. Em se tratando de modelos de escolha modal, os modelos comportamentais ou de escolha discreta são os mais usuais.

A hipótese básica desses modelos é que "a probabilidade de um indivíduo escolher uma determinada alternativa é função da atratividade da alternativa escolhida em relação à atratividade das alternativas disponíveis" (ORTÚZAR E WILLUMSEM, 1994). A atratividade de uma alternativa é representada através do conceito de "função utilidade", que é definida pela combinação de variáveis que representam as características das alternativas ou do indivíduo. Normalmente uma função utilidade é apresentada na seguinte forma:

$$F = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + ... + \beta_n \cdot x_n$$
4.1

Os coeficientes da equação 4.1, identificados como β_1 , $\beta_2...\beta_n$, representam o peso relativo de cada uma das variáveis no momento da escolha do indivíduo por um determinado modo de transporte e podem representar também as características do indivíduo que utiliza determinado modo. Na estatística são conhecidos também como estimadores. A constante β_0 que aparece no início da equação, denominada intercepto, representa a influência das características do indivíduo ou da alternativa de transporte que não foram incluídas na função utilidade.

Para se prever a escolha do modo de transporte, o valor de utilidade deve ser comparado com os valores de utilidade das outras alternativas e transformado em uma probabilidade entre 0 e 1. Utiliza-se, normalmente, uma transformação do tipo Logit que pode ser generalizada pela equação 4.2:

$$P1i = \frac{\exp(U1i)}{\exp(U1i) + \exp(U2i)}$$
4.2

Onde:

P1i = probabilidade de o indivíduo i optar pelo modo 1;

U1i = utilidade do modo 1 para o indivíduo i

U2i = utilidade do modo 2 para o indivíduo i

A regressão logística é muito utilizada para análise de pesquisas que apresentam variáveis resposta categóricas em que o interesse seja o de descrever a relação entre a variável resposta e um conjunto de variáveis explanatórias ou covariáveis. Quando a variável resposta é dicotômica, possuindo assim duas categorias, a regressão é denominada "logística dicotômica". Para variáveis resposta com mais de duas categorias, a denominação utilizada é regressão logística politômica.

As categorias utilizadas podem ser do tipo ordinais ou nominais. Quando a resposta é nominal, os modelos são ajustados para logitos generalizados. Comumente representam-se os modelos de escolhas individuais através de modelos logit binomial simples. Nestes modelos escolhe-se o conjunto de variáveis explicativas e o conjunto de escolhas individuais.

O conjunto de variáveis explicativas é composto pelas variáveis que realmente vão compor a função utilidade de um modelo de escolha discreta. A definição destas variáveis é obtida por revisão bibliográfica e a possibilidade de obtenção dos dados necessários, nas condições específicas do objeto estudado. Já no conjunto de escolhas individuais ou de alternativas disponíveis, são incluídas as alternativas que realmente são consideradas pelo indivíduo, mesmo que inconscientemente. Deve-se analisar estas variáveis com muito critério, pois algumas que, numa primeira análise sendo ignoradas, podem ser importantes para que não haja distorções nos resultados do modelo.

Nessa tese as variáveis levantadas foram de: forma urbana (através de levantamento in loco e mapas digitais), percepção dos pais sobre a forma urbana da cidade de Goiânia, fatores moderados e mediadores (através de questionário aplicado aos mesmos), conforme é mostrado no Capítulo 5 (Aspectos Metodológicos).

Após o processamento do modelo parte-se para etapa de calibração e validação dos resultados. Esta etapa visa identificar a melhor resposta que representa a opção dos indivíduos entre os modos de transporte disponíveis. Geralmente a avaliação de um modelo de escolha discreta do tipo Logit é baseada em dois parâmetros estatísticos: o teste-t e o índice ρ^2 .

O teste-t avalia se a variável em questão contribui de forma significativa para o poder de explicação do modelo. Valores do teste-t maiores que 1,96 (em módulo) significam que a variável tem um efeito significativo e deve ser incluída no modelo (com um nível de confiança de 95%). O índice ρ^2 avalia o ajuste geral do modelo e varia entre 0 (nenhum ajuste) e 1 (ajuste perfeito). Valores de ρ^2 da ordem de 0,40 representam um bom ajuste (ORTÚZAR E WILLUMSEM, 1994). Em geral, são analisados também os sinais dos coeficientes das variáveis para verificar se estão de acordo com a teoria e o esperado. Por exemplo, uma variável que se espera que contribua positivamente para a utilidade de um modo de transporte deve ter um coeficiente com sinal positivo e, ao contrário, a não contribuição possui um sinal negativo.

4.2 CARACTERÍSTICAS DOS MODELOS DE ESCOLHA DISCRETA

Segundo Ben-Akiva e Lerman (1985), o princípio dos modelos de escolha discreta é a calibração da função utilidade, ou seja, calibrar o valor que o indivíduo atribui a um

produto ou serviço pela combinação de fatores, de forma que esse valor corresponda ao máximo no conjunto de opções que estão à sua disposição. O modelo permite captar a significância das variáveis explicativas e a relação destas com a variável explicada.

A função utilidade exprime matematicamente as preferências manifestadas e podem ser usadas para representar o nível de satisfação alcançado pelo indivíduo ao utilizar-se de um ou outro modo de transporte. Os valores desta função utilidade permitem estabelecer uma comparação entre a utilidade proporcionada aos usuários pelos diferentes modos de transportes disponíveis para o seu deslocamento. Assim, a partir da definição da função que relaciona os atributos de um produto com a sua utilidade resultante pode-se estimar o comportamento do consumidor diante das alternativas disponíveis.

De uma forma geral, na construção de modelos de escolha discreta que são representados por uma função utilidade, determina-se a importância relativa dos atributos incluídos no experimento e os valores de tempo. Posteriormente especifica-se a função utilidade para modelos de predição e, finalmente, obtém-se o valor da função utilidade.

4.2.1 Tipos de Modelos de Escolha Discreta

Dos modelos de escolha discreta, os mais utilizados são: Modelo Logit Multinomial, Modelo Logit Aninhado, Modelo Probit Multinomial, Modelo Generalizado de Extremo Valor e ainda a Escolha por Eliminação e Satisfação.

O modelo logit, pode ser retratado da seguinte forma: Multinomial (o logit binomial é um caso particular do logit multinomial para quando existem unicamente duas alternativas, por exemplo, deslocamento a pé ou bicicleta) e o Logit Aninhado. O Modelo Logit Multinomial é o modelo de escolha discreta simples e mais popular (ORTÚZAR E WILLUMSEN, 1994). Nesta forma de modelo logit os modos de transporte considerados são representados como alternativas individuais para o viajante, conforme mostrado nas Figuras 4.1 e 4.2

Segundo Deus (2008), o Modelo Logit Aninhado, é uma extensão do modelo logit multinomial designado a capturar correlações entre as alternativas. Ele difere do modelo multinomial pelo fato de ser possível o agrupamento de alternativas que sejam similares em um mesmo "ninho". No Modelo Logit Aninhado passa a haver então níveis hierárquicos diferentes para se fazer a estimativa do modelo. A Figura 4.3 exemplifica o modelo.

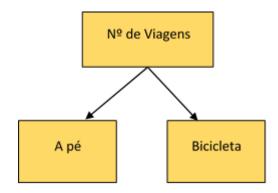


Figura 4.1 – Modelo Logit Binomial

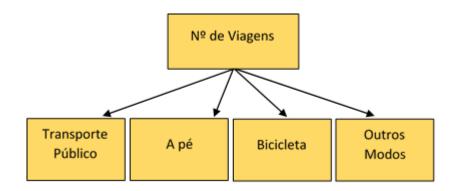


Figura 4.2 – Modelo Logit Multinomial

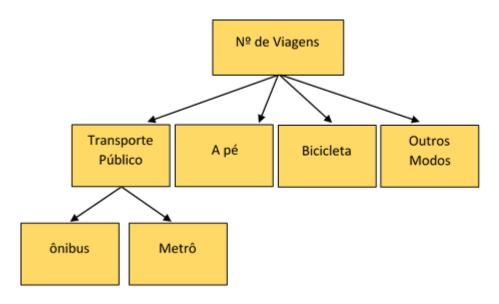


Figura 4.3 – Modelo Logit Aninhado

4.3 MODELOS DE REGRESSÃO LOGÍSTICA MULTINOMIAL

Quando se pretende analisar dados em que as categorias da variável resposta são nominais, os modelos devem ser ajustados para logitos generalizados. O logito generalizado é definido por:

$$logit_{hik} = \log[\frac{\pi_{hik}}{\pi_{hir}}] \tag{4.3}$$

Para k = 1,2,...,(r-1), sendo r o número de categorias da variável resposta. Cada logito é obtido a partir da probabilidade de cada categoria sobre a da última categoria de resposta. Com a equação 4.3, encontrar o logithik é encontrar a função utilidade já apresentada no item anterior.

Os modelos que utilizam o logit multinomial são estimados com base no algoritmo de máxima verossimilhança, que estima o conjunto de parâmetros relativos ao ajuste do modelo. O ajuste por máxima verossimilhança tem por objetivo obter, a partir de uma amostra, as estimativas de parâmetros estatísticos, assegurando consistência, eficiência e ajuste dos parâmetros do modelo. Entretanto, para que o processo de estimação de máxima verossimilhança seja confiável, exigem-se grandes amostras a estudar.

Posteriormente, realizam-se testes estatísticos para avaliar a significância dos parâmetros dos modelos calibrados no programa. No presente trabalho esta avaliação foi feita utilizando-se a estatística de Wald (W) e a razão de chances (odds ratio).

A estatística de Wald (W) constitui uma importante estatística para avaliar a significância do logit. A estatística W é uma alternativa comumente utilizada para testar a significância individual dos coeficientes de cada variável independente. As hipóteses que são consideradas são as mesmas para o teste da razão de verossimilhança, ou seja, o teste compara a estimativa da máxima verossimilhança do coeficiente da inclinação da reta β1 com uma estimativa do seu erro padrão. O resultado, sob a hipótese nula que β1=0 seguirá uma distribuição normal padronizada. O teste de Wald é usado para examinar restrições impostas aos coeficientes da regressão e calcula uma estatística que mede a eficiência das estimativas dos coeficientes da regressão original em satisfazer as

restrições da hipótese nula. Assim, o teste de Wald é utilizado para testar a significância estatística de cada coeficiente (β1) no modelo (Figueira, 2006).

Outro parâmetro muito utilizado na interpretação das regressões multinomiais é denominado de Razão de Chances ou Odds Ratio. A odds ratio (OR) é uma medida que descreve a intensidade de associação ou as chances maior ou menor de uma variável de um determinado grupo apresentar uma resposta em relação a outro grupo. Quando OR = 1, não existe associação entre as variáveis estudadas. Se, no entanto, OR>1, um determinado grupo tem chance maior de apresentar a resposta que outro grupo comparado. Consequentemente, se OR<1, um determinado grupo tem chance menor de apresentar a resposta em relação a outro grupo comparado. Numa análise de regressão, a OR representa a exponencial dos estimadores encontrados sendo que, se positivo, representa um aumento de chance e, se negativo, uma diminuição de chance. Nos capítulo seguintes estes conceitos serão utilizados na interpretação dos resultados obtidos no modelo.

4.4 O SOFTWARE RStudio

O programa R utilizado neste trabalho trata-se de um software livre e de código aberto, muito utilizado na análise de gráficos e cálculos estatísticos. O programa tem a vantagem de poder ser instalado em diferentes sistemas operacionais, incluindo o Windows, o Linux, Macintosh e outros. O RStudio é uma interface do software estatístico R, uma ferramenta amigável e de fácil utilização levando o usuário a explorar mais rápido seus recursos e diminuindo a possibilidade de erros na escrita da programação dos scripts criados.

O software RStudio possui uma tela principal disposta em 4 janelas que pode ser visualizada na figura 4.4. No canto superior à esquerda é apresentada a janela Source na qual são disponibilizados os scripts (códigos de programação previamente redigidos e salvos em arquivo com extensão .R), arquivos de texto, documentos Sweave, documentação do R e documentos TeX. Na janela superior à direita, a primeira aba é disponibilizada para gerenciar diferentes áreas de trabalho. Já na segunda aba desta janela fica registrado o histórico de todos os scripts, funções e ações executadas.

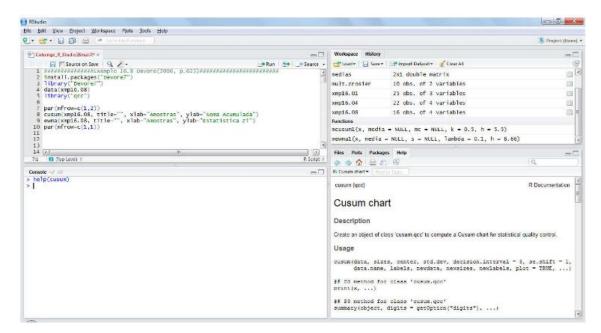


Figura 4.4 - Visão da Tela Principal do RStudio

Na parte inferior à esquerda, localiza-se a janela do console, a mesma janela padrão disponibilizada no R. E finalmente, na janela inferior a direita, são agrupadas em uma janela outras 4 abas: a primeira delas é um gerenciador de arquivos (abaFile), na segunda são exibidos os gráficos gerados pelo RStudio (abaPlots). Na terceira aba são apresentados os pacotes já instalados (abaPackages). E finalmente, a quarta aba tratase da Ajuda (abaHelp) do RStudio.

Os dados a serem analisados e organizados previamente numa planilha excel são importados para o software RStudio objetivando a confecção do modelo de regressão, processamento e geração dos resultados para avaliação. No anexo B estão disponíveis as listagens dos arquivos de saída obtidos com o processamento do modelo utilizando o software RStudio.

4.5 TÓPICOS CONCLUSIVOS

Neste capítulo foram apresentadas as bases teóricas utilizadas no confecção do modelo de regressão logística multinomial além das características do software estatístico Rstudio. A utilização de um modelo logístico é imprescindível numa análise comportamental mesmo levando-se em consideração um número significativo de variáveis.

Utilizando-se de um modelo logit multinomial é possível correlacionar as variáveis envolvidas no problema e avaliar a influência das mesmas sobre o padrão de escolha do modal pelos pais na condução do filho até a escola. As respostas obtidas são de

grande importância principalmente para o poder público no direcionamento dos investimentos em modos de transporte e, sobretudo, nos modais mais sustentáveis como o caminhamento, a bicicleta e o ônibus.

ASPECTOS

METODOLÓGICOS

5.0 ASPECTOS METODOLÓGICOS

Neste capítulo será apresentado todos os procedimentos realizados para obtenção dos dados relevantes ao estudo e os resultados da análise exploratória dos mesmos. Para realização do estudo de caso foi escolhida a cidade de Goiânia-GO, parte pela facilidade de obtenção dos dados, já que a autora desta Tese além de ser professora e residente na cidade, tem contato com os órgãos de transportes da mesma.

5.1 METODOLOGIA UTILIZADA

A metodologia utilizada neste trabalho está mostrada na figura 5.1. Percebe-se que, assim, como no trabalho de McMillan (2003), essa pesquisa explora como a forma urbana influencia o comportamento de viagem das crianças, examinando a natureza e forma das relações entre a forma urbana, fatores sociais/econômicos e demográficos na tomada de decisões dos pais em relação a escolha do modo de viagem dos seus filhos até a escola. Nessa pesquisa as análises dos resultados estão entre três variáveis de estudo:

- a) Escolha modal: deslocamentos a pé, bicicleta e ônibus do transporte público
- b) Dados da forma urbana: desenho urbano e disponibilidade de transporte coletivo
- c) Dados externos a forma urbana: fatores moderados e fatores mediadores

À semelhança da pesquisa de Mcmillan (2003), a estrutura desta tese está baseada na relação entre a forma urbana e comportamento de viagem, incluindo a identificação e o papel de outros fatores externos como em Handy (1996) e que influenciam a decisão de viagem (o modelo de Handy e Mcmillan está descrito no capítulo 3). No entanto, este trabalho inseriu em seu modelo conceitual a variável transporte público na escolha modal, isso por que, tal análise, até a conclusão do trabalho, ainda não foi utilizada em nenhum outro estudo. Os dados coletados para a forma urbana também foram modificados em relação ao proposto por Mcmillan e a variável disponibilidade de transporte coletivo foi inserido nos dados da forma urbana.

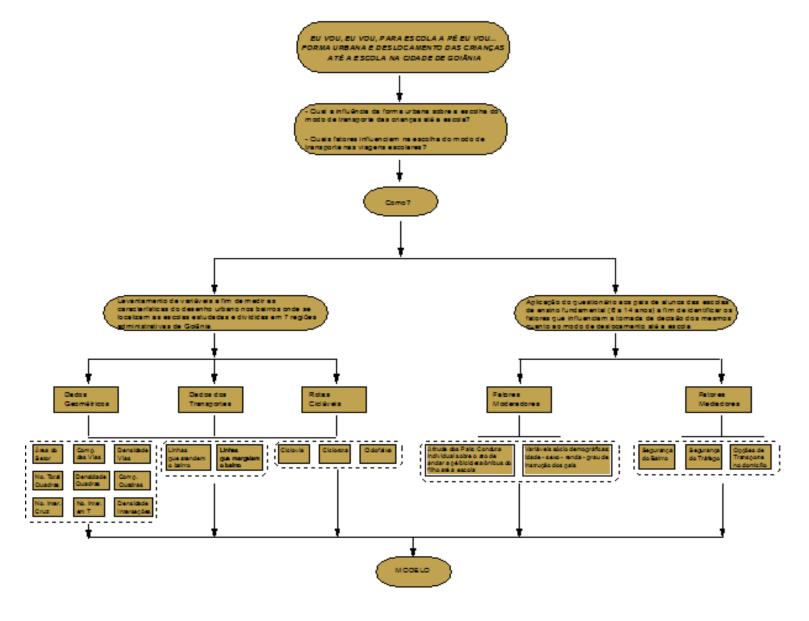


Figura 5.1 – Metodologia Empregada no Trabalho

Pode-se observar no modelo da figura 5.1, que as variáveis coletadas foram divididas entre as da forma urbana (descritas no capítulo 2) e os fatores moderadores e mediadores (descritos no capítulo 3). Para testar a influência da forma Urbana sobre a escolha do tipo de veículo nos deslocamentos escolares, foram levantadas variáveis do desenho urbano (dados geométricos), dados do transporte público e rotas cicláveis, já utilizados em outros trabalhos como Handy (1996a), Cervero e Kockelman (1997), Cervero et al. (2009), Krizek (2003), Handy et al. (2006) e Mcmillan (2003), descritos no capitulo 2 desta Tese. Essas variáveis serão detalhadas no ítem 5.4.

Ainda na figura 5.1, pode-se observar que dentre as variáveis moderadoras foram levantadas: Atitude dos pais (percepção e conduta dos pais sobre o modo de deslocamento a pé, bicicleta ou ônibus do filho até a escola) e variáveis sócio-demográficas (idade, sexo, renda da família, estado civil, grau de instrução dos pais, número de automóveis na família, número de pessoas habilitadas na família). Já as variáveis mediadoras estudadas foram: segurança do bairro, segurança do tráfego e opções de transporte no domicílio).

5.2 DELIMITAÇÃO DA ÁREA DE ESTUDO

A cidade de Goiânia, capital do Estado de Goiás, está localizada na região central desse estado. Sua população, segundo dados SEMDUS (2013), era de 1.393.579 habitantes no ano de 2013. O Município de Goiânia é organizado em sete regiões administrativas¹, segundo a Prefeitura de Goiânia em: Campinas-Centro, Leste, Oeste, Sudoeste, Sul, Noroeste e Norte, conforme apresenta a figura 5.2.

-

¹ A divisão em sete regiões administrativas que foi considerada nessa Tese é a divisão mais recente (2010), adotada pela Prefeitura de Goiânia, no entanto até esta data, dezembro (2016) não foi oficialmente consolidada.

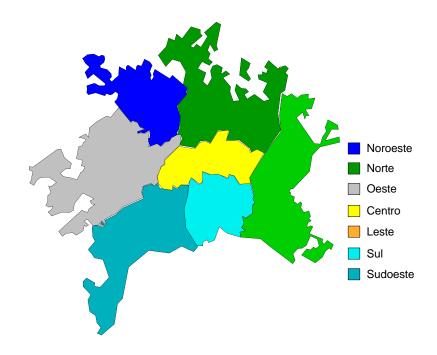


Figura 5.2 - Perímetro Urbano e as sete Regiões Administrativas de Goiânia.

5.2.1 Sobre a Cidade de Goiânia

Goiânia nasceu do desejo de mudança da antiga capital do Estado – Vila Boa – para uma nova cidade. A antiga capital estava localizada em uma região montanhosa que acarretava vários problemas logísticos, e o desejo de deslocar a sede do Governo eram decorrentes desde o período colonial. A ideia de mudança da capital foi finalmente concretizada por Pedro Ludovico Teixeira apoiado por Getúlio Vargas, sob a tutela de Marcha para o Oeste. (MANSO, 2013)

O interventor Pedro Ludovico Teixeira assumiu o governo do Estado em 22 de novembro de 1930, iniciando a partir dessa data seu plano de mudança da nova capital. Em 20 de dezembro nomeou uma comissão de pessoas habilitadas para iniciar os estudos para escolha do sítio onde se construiria a nova capital. Em 1933, Attílio Corrêa Lima iniciou os projetos urbanísticos de Goiânia, que segundo Decreto nº 3.359 deveria ser localizada nos arredores de Campinas no Sul de Goiás. (RIBEIRO, 2004)

O arquiteto Attílio Corrêa Lima foi responsável pelas primeiras ideias e pelos primeiros desenhos da cidade que acabaram se materializando nos setores central e norte. No entanto, o arquiteto não deu continuidade nos projetos e afastou-se em 1935, sendo substituído pelo engenheiro Armando de Godoy. O engenheiro foi o responsável por

todas as modificações realizadas nos desenhos originais de Attílio Correa Lima, que culminou na aprovação do Plano de Urbanização de Goiânia em 1938, pelo Decreto-lei municipal 90-A. (GONÇALVES, 2003).

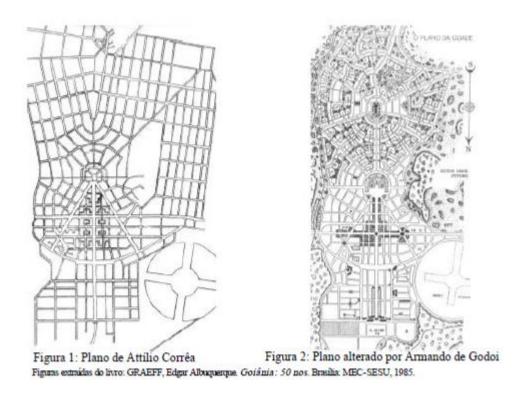


Figura 5.3 – Planos Atílio Corrêa Lima e Armando Godoi Fonte: Gonçaves (2003)

Segundo Ribeiro (2004), Goiânia teve em sua história cinco planos diretores, que orientaram seu desenvolvimento e crescimento, apesar da história oficial da cidade contar apenas quatro. Segundo a autora, são eles:

- Concluído e oficializado em 1938, iniciado pelo arquiteto e urbanista Attílio Corrêa Lima (1933-1937) e finalizado pelo engenheiro urbanista Armando Augusto de Godói (1935-1937);
- 2. Desenvolvido pelo arquiteto Luís Saia (1959-1962), não oficializado devido ao momento político da Revolução de 1964;
- 3. Elaborado pelo arquiteto e urbanista Jorge Wilheim (1967-1969);
- 4. Desenvolvido pela Engevix Engenharia S.A (1989-1992) e oficializado em 1994;
- 5. Lei complementar n° 171 de 29/05/2007 Plano Diretor de Goiânia atual.

O primeiro plano de Goiânia foi utilizado e aplicado até o início dos anos 50, com exceção da ocupação do leste da cidade compreendida pelos bairros Vila Nova, Botafogo e Nova Vila, ocupados pelos construtores da cidade e cuja moradia deveria ser provisória, no entanto se tornaram definitivos e regularizados entre 1947 e 1954. A

forma como a cidade deveria crescer estava descrita no plano, no início, seriam ocupados somente os setores central e norte, após seis anos poderia ser iniciada a ocupação dos setores sul e oeste. Em todos esses bairros, o desenho seguia a topografia do terreno, e optou-se por uma malha ortogonal tipo "tabuleiro de xadrez".

Nesse período o parcelamento do solo de Goiânia era regido pelo seu plano original e era uma atribuição do Estado. A mancha urbana restringia-se a Campinas e ao Setor Central, compreendendo também os Setores Sul, Oeste e Norte (Bairro Popular). A ocupação do Leste como citado acima extrapolava os limites do desenho original.

No início da década de 50, o poder público, pressionado pelos proprietários das glebas lindeiras da zona urbanizada, rendeu-se as pressões dos empreendedores imobiliários, e foi exigido à estes apenas a locação dos lotes e a abertura de vias (ficando desobrigados do calçamento de ruas, água e esgoto). A cidade cresceu desde então de uma forma vertiginosa, o que descaracterizou o plano inicial. Entre 1950 e 1964, foram aprovados 183 loteamentos que não obedeciam a nenhum critério técnico. (RIBEIRO, 2004).

O mapeamento realizado por Ribeiro (2004) mostra que, nesse período, a área parcelada da cidade cresceu surpreendentemente, incorporando os Setores Universitário, Bueno e Jardim Guanabara, entre outros. A cada nova década, novos bairros surgiam e se articulavam ao centro histórico, promovendo uma extensão da cidade contrária à concepção de seus desenhos originais.

Um novo plano oficial só foi implementado no final da década de 60, já que o plano desenvolvido por Luis Saia, nem chegou a ser completamente desenvolvido. No novo plano de 1969, os parcelamentos realizados pela iniciativa privada não foram proibidos, no entanto, as exigências requeridas para a infra-estrutura urbana, praticamente os inviabilizava. Esse controle, fez surgir na cidade, até o final da década de 80, vários loteamentos clandestinos e sem nenhum critério técnico.

Em 1992 foi aprovado o terceiro plano oficial de Goiânia, e para sua regulamentação, foi elaborada uma nova Lei de Uso do Solo, aprovada em 1994. Segundo dados IBGE (2010) a população de Goiânia em 1960 era de 151.013 pessoas. Em 2000 esse número aumentou para 1.093.007, como mostra a tabela 5.1, implicando em um acréscimo de 7,2 vezes em relação ao censo de 2010. Esse aumento exacerbado, transformou a cidade, fazendo com que a mesma contraísse problemas iguais às outras cidades sem

planejamento. Segundo Medeiros (2006) a cidade cresceu como uma "colcha de retalhos", e o único traço que ficou como herança do desenho original do setor central foi a repetição de praças circulares entrelaçadas por avenidas.

Tabela 5.1 - Evolução da população de Goiânia – 1940 - 2010

ANO	POPULAÇÃO
1940	48.166
1950	53.389
1960	151.013
1970	380.773
1980	717.526
1991	922.222
1996	1.003.477
2000	1.093.007
2007	1.244.645
2010	1.302.001

Fonte: IBGE, 2010

O mais recente plano urbanístico da cidade de Goiânia resulta da Lei Complementar nº 171, de 29 de maio de 2007 e traz em seu escopo os preceitos da cidade compacta e do novo urbanismo em suas diretrizes gerais. Em resumo a Lei abrange as seguintes temáticas: modelo espacial; perímetro urbano; macrozoneamento da área urbana e rural; macro rede viária básica; sistema de transporte coletivo; desenvolvimento econômico; programas especiais e vazios urbanos.

Dentre as principais premissas do Plano Diretor 2007 estão: a construção de uma cidade compacta e miscigenada; a construção de corredores exclusivos para o transporte coletivo; a promoção de geração de emprego e renda, fortalecendo as bacias econômicas já implantadas; a promoção de uma política habitacional de baixa renda; implantação de programas especiais para revitalização, reurbanização e requalificação urbana; incentivar projetos em áreas de interesse social; bem como uma modernização administrativa.

O município de Goiânia foi subdividido, em macrozonas construída e macrozonas rurais, como evidencia a figura 5.2. Na porção rural estão inseridos: Capivara, João Leite, São Domingos, Lajeado, Alto Anicuns, Alto Dourados e Barreiros.

Figura 5.4 - Macrozona construída e Macrozona rural. Fonte: Plano Diretor (2007).

Foi desenvolvido um modelo espacial da área construída de Goiânia, onde consta uma subdivisão da mesma em seis áreas mostrado na figura 5.4:

- Áreas Adensáveis: são áreas estimuladas às maiores densidades habitacionais e de atividades econômicas, sustentadas pela rede viária e de transporte;
- 2. Áreas de Adensamento Básico, que são áreas de baixa densidade, para as quais será admitida a duplicação dos atuais padrões de densidade, visando a correlação das funções urbanas em menores distâncias e a otimização dos benefícios sociais instalados, estando sujeita ao controle de densidade;
- 3. Áreas de Desaceleração de Densidade, as quais serão dirigidas ações de controle e redução do atual processo de densificação urbana. Integram essa unidade territorial os setores: Alto da Glória, Vila São João, Jardim Bela Vista, Jardim Goiás e Setor Bueno;
- 4. Áreas Especial de Interesse Social, são áreas que objetivam a promoção prioritária da moradia destinada à população de baixa renda;
- Áreas de Uso Sustentável, são aquelas contíguas as APP's (Áreas de Preservação Permanente), com restrição de uso e ocupação; e por fim, as
- 6. Áreas de Restrição Aeroportuárias, são áreas próximas ao aeroporto de Goiânia.

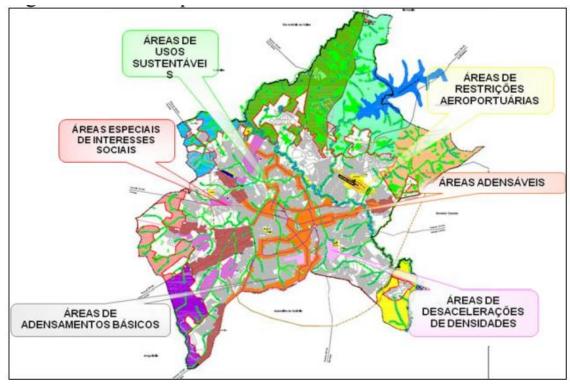


Figura 5.5 - Modelo Espacial de Goiânia. Fonte: PDG (2007)

A seguir far-se-á um breve comentário sobre alguns aspectos da política urbana que estão descritos no Plano Diretor 2007 de Goiânia.

O texto sobre política urbana aborda seis eixos estratégicos:

- 1. Ordenamento Territorial O território urbano e rural do município foi dividido em macrozonas (como verificado na figura 5.2), constando na subdivisão o espaço construído e as sub-bacias hidrográficas do território com ocupação rarefeita. Como premissa de valorização de uma cidade compacta, foram priorizadas áreas de urbanização e densificação da cidade construída e ajustado os indicativos de crescimento da cidade à dinâmica de sua ocupação concêntrica. Através de instrumentos de regulação são definidos parâmetros de controle e ocupação do solo no que se refere à edificação e parcelamentos.
- 2. Sustentabilidade Socioambiental Prioriza o desenvolvimento local de forma sustentável para todo o Município de Goiânia, visando a proteção, a recuperação e a manutenção dos aspectos paisagísticos, históricos, culturais, arqueológicos e científicos da cidade. O Plano prevê a implantação de programas de sustentabilidade socioambiental através dos seguintes subprogramas:

- Subprograma de Gerenciamento e Proteção Ambiental, Subprograma de Controle e Qualidade do Ar, Subprograma de Controle da Poluição Sonora, Subprograma de Controle da Poluição Visual, Subprograma de Recursos Hídricos, Subprogramas de Áreas Verdes, Subprogramas de Saneamento e Subprograma de Coleta e Destinação de Resíduos Sólidos.
- 3. Mobilidade, Acessibilidade e Transporte Tem por objetivo promover ações de forma a garantir a mobilidade urbana sustentável, proporcionando o acesso amplo e democrático ao espaço urbano, eliminando ou reduzindo a segregação espacial, garantindo o desenvolvimento urbano, contribuindo para a inclusão social, favorecendo a sustentabilidade socioambiental e a acessibilidade universal. São premissas nesse âmbito do Plano: - estimular os meios não motorizados de transporte, valorizando a bicicleta como um meio de transporte e integrando-a com os modais de transporte coletivo - garantir uma rede estrutural de transporte coletivo: com corredores exclusivos, capacidade de implantação de veículos articulados, biarticulados, veículos leves sobre trilhos e modais com tecnologia metroviária. Quanto a politica voltada a acessibidade, o texto versa sobre: regulamentar e implementar ações voltadas especialmente aos portadores de deficiência física, relativa ao transporte, acessibilidade em escolas, parques, acessos a edificações, a espaços públicos e privados, garantindo sua segurança; adequar as calçadas para atender o fluxo de pedestre da cidade especialmente as pessoas portadoras de limitações locomotoras; promover a cultura da acessibilidade em todo o Município, através da implantação do programa brasileiro de acessibilidade urbana denominado Brasil Acessível.
- 4. Desenvolvimento Econômico O crescimento da economia e o avanço social da população será alicerçada na conservação dos recursos naturais e do meio ambiente, em novas oportunidades empresariais e tecnológicas. A implementação das estratégias de promoção econômica dar-se-á visando: fortalecer o papel de metrópole regional na rede de cidades brasileiras; disseminar pelo território do Município as atividades econômicas; garantir a instalação das atividades econômicas pelo tecido urbano; fomentar a produção agropecuária e ordenar o abastecimento familiar; promover a geração de emprego e renda; criar mecanismo para regularizar o setor informal, estimulando a promoção dês trabalho e renda; promover o turismo como atividade geradora de emprego e renda; fomentar os comércios agropecuários, agroindustriais, de artesanato e confecção nas feiras livres do município; incentivar, estruturar e

- qualificar os feirantes e as feiras livres do município, com especial atenção a Feira Hippie.
- 5. Desenvolvimento Sociocultural O Plano prevê prioridade a inclusão social da população, adotando políticas públicas que promovam e ampliem a melhoria da qualidade de vida dos seus cidadãos. Os objetivos, as diretrizes e ações estratégicas previstas no Plano são voltadas a população de baixa renda, as crianças, os adolescentes, os jovens, os idosos, os portadores de necessidades especiais, os gays, lésbicas, bissexuais e transexuais GLBT e as minorias étnicas. As diretrizes básicas que norteiam o desenvolvimento Sociocultural do município são: a Promoção da Moradia; Educação; Saúde; Assistência Social; Inclusão Social; cultura; Esporte, lazer e Recreação; Segurança alimentar e nutricional.
- 6. Gestão Urbana As estratégias da gestão urbana que são contempladas no Plano, são voltadas à produção de uma cidade sustentável, garantindo a qualidade dos serviços e participação da comunidade com espaço para deliberação sobre as políticas, planos, programas e projetos de desenvolvimento regional.

5.2.2 - Estatística e amostra da pesquisa

Como citado anteriormente a pesquisa foi realizada em escolas do ensino fundamental da cidade de Goiânia das redes municipal, estadual e federal. A Lei nº 11.274/2006, dispõe sobre a obrigatoriedade da duração de nove anos para o ensino fundamental, iniciando a criança com seis anos completos. Segundo a mesma Lei o ensino fundamental abrange dois ciclos: Ciclo I – de 6 a 10 anos de idade, compreendendo séries de 1º ao 5º ano; Ciclo II – de 11 a 14 anos de idade, compreendendo séries de 6º ao 9º ano.

Para delimitação da área de estudo, dividiu-se as escolas de ensino fundamental de Goiânia nas sete regiões administrativas, mostradas na figura 5.2. Segundo dados do Instituto Mauro Borges de estatística e Estudo Sócio econômicos IMB (2013), de 2010 a 2012, houve uma pequena variação no número de estabelecimento de ensino da cidade, como mostra a tabela 5.2. As escolas estaduais passaram de 118 em 2010 para 109 em 2012, um decréscimo de 9 estabelecimentos. Já as escolas municipais apresentaram um acréscimo de 12 escolas entre os anos 2010 a 2012. Os estabelecimentos particulares eram 351 em 2010, passaram para 337 em 2011 e perderam uma unidade em 2012 passando para 336 escolas.

Tabela 5.2 - Total de Estabelecimentos de Ensino e Sala de Aula por tipo de vínculo – Goiânia 2010 - 2012

Tipo de vínculo do Estabelecimento	2010	2011	2012
Estabelecimentos de Ensino - Total (número)	744	729	732
Estabelecimentos de Ensino - Federal (número)	3	3	3
Estabelecimentos de Ensino - Estadual (número)	118	115	109
Estabelecimentos de Ensino - Municipal (número)	272	274	284
Estabelecimentos de Ensino - Particular (número)	351	337	336
Salas de Aula Existentes - Total (número)	8.304	8261	8.063
Salas de Aula Existentes - Federal (número)	77	78	76
Salas de Aula Existentes - Estadual (número)	1.955	2.012	1.559
Salas de Aula Existentes - Municipal (número)	2.063	2.079	2.180
Salas de Aula Existentes - Particular (número)	4.209	4.092	4.248
Salas de Aula Utilizadas - Total (número)	7.420	7.357	7.264
Salas de Aula Utilizadas - Federal (número)	77	78	76
Salas de Aula Utilizadas - Estadual (número)	1.627	1.568	1.274
Salas de Aula Utilizadas - Municipal (número)	2.034	2079	2.191
Salas de Aula Utilizadas - Particular (número)	3.682	3.632	3.723

Fonte: Instituto Mauro Borges de Estatística e Estudos Socioeconômicos - IMB

Elaboração: SEMDUS/DPESE/DVPEE/DVESE

A Secretaria de Educação, Cultura e Esporte de Goiás forneceu os dados necessários para aplicação da pesquisa com os pais dos alunos das escolas do ensino fundamental. O banco de dados fornecido continha informações, como: nome da escola; endereço; telefone; nome dos diretores e coordenadores; rede de ensino federal, estadual, municipal e particular; número total de alunos matriculados por rede de ensino.

Os dados foram manipulados e as escolas do ensino fundamental separadas das demais. Escolheu-se os alunos do ensino fundamental para estudo por se tratarem de crianças com idade entre 6 a 14 anos de idade, e que por isso precisam dos pais para se deslocarem ou para escolher o melhor veículo para tanto. Segundo dados mostrados na tabela 5.3, Goiânia tem atualmente 297 escolas municipais, sendo que deste número apenas 167 são do ensino fundamental com 67.923 alunos matriculados; as escolas estaduais somam um total de 108 estabelecimentos e 92 oferecem o ensino fundamental com 25.963 alunos inscritos; das 375 unidades particulares 263 oferecem o ensino fundamental e contam com 65.288 alunos matriculados.

Tabela 5.3 - Total de Estabelecimento de Ensino e Número de Escolas e Alunos matriculados no Ensino Fundamental em Goiânia

		Ensino Fundamental	
	Total de	Número	Número de
	Escolas	de	alunos
	(número)	escolas	matriculados
Municipal	297	167	67.802
Estadual	108	92	25.963
Privada	375	263	65.331

Fonte: Secretaria de Educação, Cultura e Esporte de Goiás Censo:2016

Após a separação das escolas por rede de ensino, as mesmas foram divididas por região administrativa, como mostra a tabela 5.4. Pode-se verificar pela tabela que a região Campinas Centro é a que possui o maior número de escolas – 114, enquanto que a região com o menor número de estabelecimentos do ensino fundamental é a região Noroeste com 55 escolas.

Tabela 5.4 - Total de Escolas do Ensino Fundamental por Região Administrativa

Região Administrativa	Municipal	Estadual	Particular	Total
Campinas centro	36	24	54	114
Leste	21	15	26	62
Noroeste	12	14	21	47
Norte	23	6	26	55
Oeste	21	11	27	59
Sudoeste	35	10	44	89
Sul	19	12	65	96
Total	167	92	263	

Fonte: Secretaria de Educação, Cultura e Esporte de Goiás – SEDUCE

Para a retirada da amostra a ser pesquisada foram divididos também, o número de alunos por Região Administrativa mostrados na tabela 5.5 e na figura 5.6.

Tabela 5.5 - Total de Alunos Matriculados do Ensino Fundamental por Região Administrativa

Região	Rede			Total	
rtogiao	Estadual Municipal		Particular	, otal	
Campinas	7161	13402	15245	35808	
centro	7101	10402	10240	33000	
Leste	3925	7990	5508	17423	
Noroeste	4753	4371	5239	14363	
Norte	1331	10384	5321	17036	
Oeste	2615	11336	5120	19071	
Sudoeste	2046	13710	9733	25489	
Sul	4132	6609	19165	29906	
Total	25963	67802	65331		

Fonte: Secretaria de Educação, Cultura e Esporte de Goiás – SEDUCE

A figura 5.6 apresenta a distribuição em percentagens das escolas de ensino fundamental na cidade de Goiânia. A região identificada como Campinas-Centro possui a maior porcentagem de escolas, 22%, com 35.808 alunos matriculados. A região com menor porcentagem de escolas de ensino fundamental foi a Noroeste (9%), com 14.363 alunos matriculados. Três regiões administrativas possuem porcentagens próximas de escolas de ensino fundamental que são a Leste (12%), Norte (11%) e Oeste (11%). As três regiões juntas possuem 53.530 alunos matriculados segundo o censo escolar de 2016. Complementando têm-se a região sul com 18% de escolas de ensino fundamental e 29.906 alunos matriculados em 2016 e a região sudoeste com 17% de escolas de ensino fundamental e 25.489 alunos matriculados. No ano de 2016, o censo escolar da secretaria de educação do estado de Goiás apontou 159.096 alunos matriculados no ensino fundamental, na cidade de Goiânia.

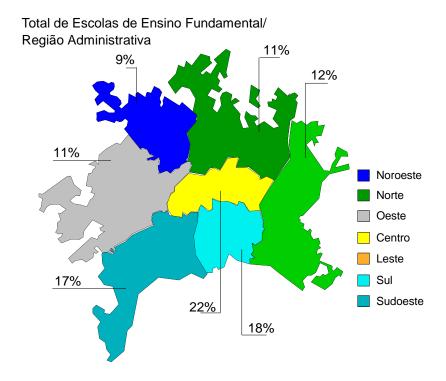


Figura 5.6 – Percentagens de Escolas do Ensino Fundamental nas sete Regiões Administrativas de Goiânia.

A partir da tabela 5.5 foram retiradas as amostras do número de pesquisas que deveriam ser aplicadas com os pais dos alunos por região administrativa. Os dados que constam na tabela 5.5 diz respeito à população dos alunos do ensino fundamental de Goiânia, separados nas redes municipal, estadual e federal. Dessa população foram extraídas amostras através da formulação apresentada na equação 5.1:

$$n = \frac{N.z^2.p.q}{(N-1).e^2 + z^2.p.q}$$
 5.1

Onde:

n - tamanho da amostra

N - é o tamanho da população,

q - é igual a (1-p), e é a margem de erro

z - é o fator da distribuição normal padronizada correspondente ao nível de significância $\boldsymbol{\alpha}$

Geralmente, o produto p.q é obtido do histórico de trabalhos anteriores ou, quando totalmente desconhecido, substituído por 0,25 - valor máximo que proporcionará um

cálculo conservador do tamanho da amostra, e utilizado nesse trabalho para o cálculo da amostra.

A estimação de proporções ambienta-se em questões de dois tipos: dicotômicas e politômicas. As questões dicotômicas são aquelas que contêm dois itens de resposta, geralmente representadas pelo binômio sim/não. Já as questões politômicas, são compostas de questões de mais duas categorias ou classes de resposta. Nessa tese a estimação foi do tipo politômica, pois as respostas das questões do formulário aplicado, apresentaram, por muitas vezes, mais de duas categorias ou classes de resposta.

A amostra foi classificada como estratificada, e a população dividida em estratos (dentro das regiões administrativas), consideradas homogêneas dentro do estrato, e heterogêneas fora dele. Para retirada da amostra final, foi feito uma proporção dos alunos por rede de ensino e dentro dos estratos, ou região administrativa. O Anexo A-1 apresenta simulações para um nível de significância 99%, 95% e 90%, e erro amostral variando de 1 a 10%.

As variáveis da forma urbana, e já descritas no capítulo 2 desta tese, foram levantadas com a ajuda mapas georeferenciados da cidade em uma plataforma SIG. O software Transcad também foi utilizado para contagem das interseções em cruz e T.

A estrutura do formulário de pesquisa (Anexo A-3) foi construída de modo a identificar como a forma urbana influencia o comportamento de viagem, incluindo a identificação de outros fatores que atuam no caminho da decisão. Como descrito no capítulo 3, esse estudo sugere que existam múltiplos fatores que influenciam na decisão de como viajar até a escola (fatores moderadores e mediadores), e que a compreensão destes vai ajudar no desenvolvimento de programas e políticas de planejamento mais eficazes.

Como em McMILLAN (2002) a pesquisa com os pais se concentrou principalmente em:

- informação dos pais sobre a viagem de seu filho para a escola e sua própria viagem;
- 2) percepção dos pais sobre a segurança (criminalidade e tráfego) enquanto seus filhos viajam a pé/bicicleta/ônibus para a escola;
- percepção dos pais de como o desenho urbano influencia sua decisão quanto a viagem a pé/bicicleta/ônibus do seu filho até a escola;
- compreensão dos pais sobre o desenho urbano do bairro onde está localizada a escola;

- 5) atitude dos pais quanto a viagem a pé/bicicleta/ônibus dos seus filhos até a escola; e
- 6) questões socioeconômicas da família.

Após o cálculo da amostra, um novo banco de dados foi preparado, e de posse dos endereços das escolas, as mesmas foram separadas por região administrativa. O sorteio das escolas a serem pesquisadas foi realizado no software Excel, com ajuda da função números aleatórios (ALEATORIOENTRE). O Anexo A-4 demonstra o nome das escolas pesquisadas, a região administrativa a qual pertence, o endereço, o número de formulários aplicados, bem como a rede a qual pertence (estadual, municipal ou particular). As escolas da rede federal não fizeram parte da pesquisa, por serem apenas 3 (três) do ensino fundamental em toda a cidade de Goiânia. O nome das escolas e sua localização em Goiânia está apresentado na figura 5.7.

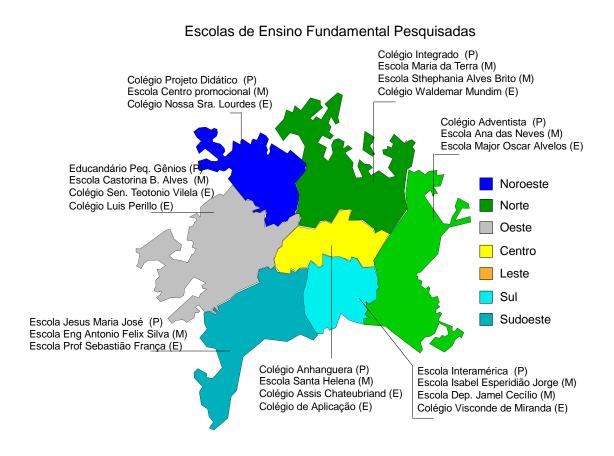


Figura 5.7 – Escolas Pesquisadas do Ensino Fundamental distribuídas nas sete Regiões Administrativas de Goiânia

5.3 DADOS COLETADOS COM OS PAIS

Para a concepção do modelo comportamental, foi necessário, dois tipos de levantamento: 1 – aplicação de questionários com os pais dos alunos do ensino fundamental da cidade de Goiânia; 2 – levantamento *in loco* das variáveis da forma urbana dos bairros onde estão localizadas as escolas pesquisadas. Todas as variáveis levantadas serviram para abastecer o modelo do tipo logit multinomial utilizado e já descrito no capítulo 4 desta Tese.

A pesquisa de campo foi iniciada em agosto de 2015 e foram pesquisados os pais dos alunos do ensino fundamental (crianças com idade entre 6 e 14 anos de idade) das escolas evidenciadas na figura 5.7. O formulário de pesquisa consta no Anexo A-3. Inicialmente foram feitos contatos com as Secretarias Estadual e Municipal de Educação de Goiânia para autorização da pesquisa nas escolas. Os órgãos receberam o formulário e autorizaram a aplicação do mesmo, após uma explanação do estudo. A princípio foram realizadas visitas iniciais e reuniões com diretores e coordenadores das escolas para uma explicação sobre a pesquisa. Em uma visita posterior, os alunos e em uma terceira visita os pais das crianças.

As reuniões com os pais e alunos foram realizadas nas salas de aula, onde foi explicado todo o formulário, seu conteúdo e o objetivo da pesquisa. Os pais foram informados que no estudo, os mesmos não necessitavam serem identificados, nem seus endereços completamente informados (apenas o bairro). No formulário consta uma pequena introdução onde é explicado o motivo da pesquisa e seus objetivos. A criança foi a responsável pela devolução dos formulários respondidos, em uma data combinada, aos coordenadores da escola.

Inicialmente foram distribuídos 2.900 formulários, considerando um nível de confiança 95% e erro máximo 6%, no entanto, o retorno dos mesmos ficaram abaixo da expectativa. O nível de confiança escolhido nesse estudo foi o de 95%, já que é o mais adotado em vários estudos semelhantes, os erros máximos podiam variar em uma escala de 1 a 10%, sem prejuízo algum para a confiança dos dados (Anexo A-1).

Em algumas escolas o retorno ficou aquém do esperado e outras escolas tiveram que ser sorteadas em um novo processo randômico. No anexo A-4 aparecem duas escolas visitadas na região Campinas Centro (estadual), região norte (municipal), região oeste (estadual) e região sudoeste (municipal). Com uma quantidade de 1.268 formulários

corretamente preenchidos, optou-se por utilizar o nível de significância 95% e erro máximo de 10%, com um total requerido de 1.096 formulários

5.4 DADOS COLETADOS VARIÁVEIS DA FORMA URBANA

Para testar a influência da forma Urbana sobre a escolha do tipo de veículo nos deslocamentos escolares, foram levantadas variáveis do desenho urbano e já utilizadas em outros trabalhos como HANDY (1996a), CERVERO & KOCKELMAN (1997), CERVERO et al. (2009), KRIZEK (2003), HANDY et al. (2006) e McMILLAN (2003), descritos no capitulo 2 desta Tese. Foram levantadas variáveis apenas dos bairros residenciais aonde se localizam as escolas e onde foram feitas as pesquisas com os pais e mostrados no Capítulo 6

Como em Handy (1996a) e Mcmillan (2003), neste trabalho optou-se em estudar como a forma urbana influencia a escolha do modo de transporte através das características do desenho das vias e do bairro, e mostradas na tabela 5.1. As variáveis do desenho urbano da cidade de Goiânia, foram levantadas através de visitas "in loco" e com ajuda de mapas digitais da cidade cedidos pela Secretaria Municipal de Desenvolvimento Econômico, Trabalho, Ciência e Tecnologia - Sedetec. As variáveis comprimento total das vias, número total de quadras, comprimento médio das quadras, número de interseções em cruz e em T e largura média das calçadas foram levantadas com ajuda do SIG e contadas todas as interseções dos bairros onde foi realizada a pesquisa com os pais, num total de 21 bairros. A calçada foi contabilizada como a medida da média entre as calçadas do setor estudado. O volume do tráfego veicular não foi contabilizado nesse estudo, devido ao esforço envolvido nas contagens de tráfego, como pesquisadores e tempo de pesquisa. Os dados referentes ao volume de veículos também não estão disponíveis no órgão de trânsito da prefeitura da cidade. Dessa forma, os dados de volume de tráfego veicular não foram utilizados, sem prejuízo à pesquisa.

Tabela 5.6 – Forma de Coleta das Variáveis da Forma Urbana dos Bairros Pesquisados

Variável da Forma Urbana	Conteúdo	Coleta
Comprimento total das vias	Medida do comprimento total das vias do bairro	Através mapa digital da cidade
		de Goiânia
	Comprimento total das vias (km)	Comp. das vias através mapa
Densidade de vias	área do setor (km²)	digital.
		Área do setor calculada
		automaticamente pelo software.
Número total de quadras	Número total de quadras do setor	Através mapa digital da cidade
		de Goiânia
	Número total de quadras do setor	
Densidade de quadras (km2)	$D_q = \frac{\text{N\'umero total de quadras do setor}}{\text{\'area do setor (km}^2)}$	Official advantage of a policy
		Cálculo direto após coleta
		anterior dos dados
Comprimento médio das		A
quadras (km)	Comprimento médio das quadras do setor	Através mapa digital da cidade
		de Goiânia
	Número total de interseções em formato cruz no	
Número de interseções em cruz	setor	
Número de interseções em T	Número total de interseções em formato T no	Contadas no software Transcad
	setor	
	Soma do número de Interseções em cruz e T no	
Número total de interseções	setor	Contadas no software Transcad
	5000	Contagas no sortware Transcad
	D w	
Densidade de Interseções	$D_{i=rac{Número\ total\ de\ interseções}{lpha rea\ do\ setor\ (km^2)}}$	Cálculo direto após coleta
		anterior dos dados
	Densidade de interseções	
Conectividade	$C = \frac{1}{\text{número total de interseções}}$	Cálculo direto após coleta
		anterior dos dados
L orgura mádia dos colocidos	Referente a largura média das calçadas no setor	Média da medida da largura das
Largura média das calçadas		calçadas do setor
Número de linhas do transporte	Quantidade de linhas de ônibus que percorrem o	Dado cedido pela Companhia
urbano que atendem o setor	setor	Metropolitana de Transportes
		Coletivos - CMTC
Número de linhas do transporte	Quantidade de linhas de ônibus que percorre as	Dado cedido pela Companhia
urbano que margeiam o setor	principais avenidas do setor	Metropolitana de Transportes
		Coletivos - CMTC
Quantidade total em km de		Dado cedido Secretária
ciclovias no setor	Quilometragem total de ciclovias	Municipal de Trânsito
		Transportes e Mobilidade - SMT
		Dado cedido Secretária
Quantidade total em km de	Quilometragem total de ciclofaixas	Municipal de Trânsito
ciclofaixa no setor		Transportes e Mobilidade - SMT
Quantidade total em km de		Dado cedido Secretária
ciclorota no setor	Quilometragem total de cicloreto	
GIGIOTOTA TIO SELOT	Quilometragem total de ciclorota	Municipal de Trânsito
		Transportes e Mobilidade - SMT

Após levantamento de todas as variáveis, os cálculos necessários foram realizados em uma planilha com ajuda do software excel e são mostrados no Capítulo 6.

5.5 O MODELO MULTINOMIAL PARA ESCOLHA DOS DIFERENTES MODOS

O modelo utilizado nesta Tese foi do tipo Logit multinomial e já detalhado no Capítulo 4. Para construção do modelo deve-se montar as equações da função utilidade, proceder à validação do modelo, analisar as variáveis que apresentam influência positiva ou negativa na escolha dos indivíduos, avaliar a razão de chance (*odds ratio*) para as variáveis que apresentam uma significância satisfatória e, por último, analisar as probabilidades de escolha. Na figura 5.8 é apresentado um fluxo da sequência de construção do modelo desde a concepção das estatísticas de regressão até chegar nas probabilidades esperadas.

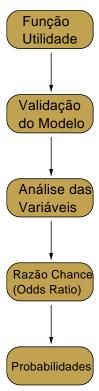


Figura 5.8 – Fluxograma de Análise do Modelo Estatístico

Para montagem das equações da função utilidade fez-se o processamento do modelo estatístico no software R-Studio®. As variáveis que abasteceram o modelo de regressão logísticas, foram retiradas do formulário de pesquisa e estão organizadas no anexo B2. Foram excluídas as variáveis que apresentam pouca significância ao problema estudado objetivando diminuir o esforço computacional e suprimir os resultados considerados espúrios (como as variáveis relacionadas às ciclovias, ciclofaixa e ciclorota). As variáveis que normalmente são excluídas correspondem àquelas que tiveram nenhuma ou pouca porcentagem de respondentes. Trabalhou-se no

processamento completo com a resposta prevendo a interação de todas as variáveis com significância e, posteriormente, procedeu-se o processamento de cada variável independente com o intuito de observar, principalmente, as variáveis relacionadas com a forma urbana e a influência na escolha dos indivíduos pelos modos mais sustentáveis. Na tabela 5.7 apresentam-se os resultados do processamento do modelo completo envolvendo todas as variáveis identificadas com significância no modelo (essa tabela também é melhor explicada no Capítulo 6). A significância foi observada avaliando os valores de probabilidades Pr(>|z|), também conhecido como P_valor . São considerados significativos valores de Pr(>|z|) < 0,1. O software R-Studio® identifica com um asterisco os valores que atendem a esta relação.

Tabela 5.7 – Resultados do Processamento Completo – R-Studio®

_			
	Estimate		or z-value Pr(> z)
(Intercept):1	8.24614		
(Intercept):2	11.07325	1.48722	
(Intercept):3	6.97143	2.17163	3.210 0.001326 **
V3Municipal:1	-0.43980	0.42455	-1.036 0.300239
V3Municipal:2	-0.87742	0.39850	-2.202 0.027677 *
V3Municipal:3	0.06779	0.65728	0.103 0.917857
V3Particular:1	2.35639	0.51168	4.605 4.12e-06 ***
V3Particular:2	0.11455	0.51557	0.222 0.824174
V3Particular:3	-0.96611	1.18346	-0.816 0.414301
V180 aluno vai sozinho:1	-4.49721		-7.602 2.91e-14 ***
V180 aluno vai sozinho:2	-2.93664		-5.051 4.40e-07 ***
V180 aluno vai sozinho:3	-2.69768		-3.799 0.000145 ***
V18Pai:1	0.41732		0.462 0.644284
V18Pai:2	-0.99134		-1.070 0.284652
V18Pai:3	-2.00785		-1.442 0.149228
V18Um outro adulto da família:1	-1.10884		-1.518 0.128913
V18Um outro adulto da família:2	-1.61878		-2.162 0.030648 *
V18Um outro adulto da família:2	-1.93905		-1.961 0.049876 *
V18Um outro adulto que não é da família:1			-1.699 0.089252 .
V18Um outro adulto que não é da família:2			-4.057 4.97e-05 ***
V18Um outro adulto que não é da família:3			-0.029 0.976780
V18Vizinhos:1	-2.97845		-3.844 0.000121 ***
V18Vizinhos:2	-1.88058		-2.458 0.013977 *
V18Vizinhos:3	-2.51332		-1.968 0.049013 *
V47sim:1	-0.10084		-0.292 0.770030
V47sim:2	-1.77261		-5.184 2.17e-07 ***
V47sim:3	-0.98730		
V55sim:1	-0.85760		-2.742 0.006113 **
V55sim:2	-0.84831		-2.817 0.004855 **
V55sim:3	-0.62088		
V91Muito importante:1	-0.29140	0.37746	-0.772 0.440114
V91Muito importante:2	-0.10873	0.36602	-0.297 0.766428
V91Muito importante:3	-1.12967	0.58641	-1.926 0.054052 .
V91Não é importante:1	1.56100	0.51885	3.009 0.002625 **
V91Não é importante:2	2.12097	0.49952	4.246 2.18e-05 ***
V91Não é importante:3	0.75417	0.71449	1.056 0.291176
V91Pouco importante:1	2.16347	0.71378	3.031 0.002438 **
V91Pouco importante:2	2.52486	0.69821	3.616 0.000299 ***
V91Pouco importante:3	0.86751	1.02791	
V100Muito importante:1	-0.86328	0.47245	-1.827 0.067665 .
V100Muito importante:2	-0.58182		-1.264 0.206157
V100Muito importante:3	0.22234		0.331 0.740635
V100Não é importante:1	-2.02250		-4.065 4.81e-05 ***
V100Não é importante:2	-2.18988		-4.477 7.58e-06 ***
V100Não é importante:3	-1.40168	0.76116	
V100Pouco importante:1	-1.62564		-3.161 0.001573 **
V100Pouco importante:2	-1.69444		-3.377 0.000733 ***
V100Pouco importante:3	-1.49173		-1.757 0.078964 .
V110:1	-0.17666		-3.397 0.000682 ***
V110.1 V110:2	-0.28262		-5.528 3.24e-08 ***
V110:2 V110:3	-0.24131		-2.896 0.003785 **
V110:3 V121:1	0.07135		1.230 0.218870
V121:2	0.10169	0.05704	
V121:3	0.18795	0.07558	2.487 0.012887 *

Na obtenção da resposta pelo processamento completo identificou-se na primeira coluna os modais de comparação (1- modo outros; 2 – modo a pé; 3 – modo bicicleta) e fixou-se um quarto modal (4 – modo ônibus) como referência na análise.

O modo de referência é escolhido de acordo com os objetivos da análise. Para cada modo, 1, 2 e 3 são identificados no modelo os interceptos da função resposta em relação ao quarto modal referenciado. Na primeira coluna da tabela 5.7 identificam-se também as variáveis onde se obteve maior significância durante o processamento completo.

Na segunda coluna da tabela 5.7 são organizados os estimadores ("estimate") de cada intercepto e das variáveis com resultados significativos. Na terceira coluna são listados os desvios padrões ("Std. Error") que serão utilizados para mensurar a variabilidade da resposta. Na quarta coluna apresentam-se os testes de significância ("z-value") também conhecidos na literatura específica como Z_valor. O teste apresentado é baseado na estatística de Wald já descrita no quarto capítulo. Na quinta coluna identificam-se as probabilidades da função resposta onde destacam-se com um asterisco as mais significativas (Pr(>|z|) < 0.1).

5.5.1 Cálculo das Utilidades e Probabilidades da Função Resposta

Com base na resposta do processamento do modelo completo é possível montar a equação que representa a função utilidade para o modo caminhamento. A função segue o formato da equação 4.1, destacando-se a constante ("intercepto") e os estimadores ("pesos") para cada variável com significância. A função utilidade para o modo caminhamento e resultante do processamento do modelo completo está descrita na equação 6.2 e a função probabilidade de cada modo está apresentada na equação 6.3.

$$F_{Ap\acute{e}} = 11,07325 - 0,87742.V3_{Municipal} + 0,11455.V3Particular \\ - 2,93664.V18_{Alunovaisozinho} - 0,99134.V18_{pai} \\ - 1,61878.V18adultodafamilia \\ - 3,13519.V18adulton\~aodafam\'afilia \\ - 1,88058.V18vizinhos - 1,77261.V47 \\ - 0.84831.V55 - 0,10873.V91muitoimportante \\ + 2,12097.V91n\~ao\'e importante \\ + 2,52486.V91poucoimportante \\ - 0,58182.V100muitoimportante \\ - 2,18988.V100n\~ao\'e importante \\ - 1,69444.V100poucoimportante$$

No anexo C são anotadas as probabilidades obtidas através do processamento do modelo completo estimando os possíveis modos escolhidos pelos indivíduos na condução das crianças até a escola. Considerando os modos estimados como A, B, C e D sendo A = a pé; B = bicicleta; C = ônibus e D = outros, a probabilidade calculada para a escolha de cada modo é dada por:

-0,28262.V110 + 0,10169.V121

$$Prob(A) = \frac{e^{Ua}}{e^{Ua} + e^{Ub} + e^{Uc} + e^{Ud}}$$

$$Prob(B) = \frac{e^{Ub}}{e^{Ua} + e^{Ub} + e^{Uc} + e^{Ud}}$$

$$Prob(C) = \frac{e^{Uc}}{e^{Ua} + e^{Ub} + e^{Uc} + e^{Ud}}$$

$$Prob(D) = \frac{e^{Ud}}{e^{Ua} + e^{Ub} + e^{Uc} + e^{Ud}}$$
6.3

Onde Prob(A) + Prob(B) + Prob(C) + Prob(D) = 1,0

Sendo:

$$\label{eq:Ua} \begin{split} & \text{Ua} = \text{a} + \text{b1.X1a} + ... + \text{bn.Xna} \\ & \text{Ub} = \text{b} + \text{b1.X1b} + ... + \text{bn.Xnb} \\ & \text{Uc} = \text{c} + \text{b1.X1c} + ... + \text{bn.Xnc} \\ & \text{Ud} = \text{d} + \text{b1.X1d} + ... + \text{bn.Xnd} \\ & \text{Xna, Xnb, Xnc e Xnd} \end{split}$$

Ua, utilidade associada ao modo A (a pé)
Ub, utilidade associada ao modo B (bicicleta)
Uc, utilidade associada ao modo C (ônibus)
Ud, utilidade associada ao modo D (outros)
São os atributos levados em consideração na análise dos modos

5.6 TÓPICOS CONCLUSIVOS

Neste capítulo percebe-se a metodologia utilizada de forma a explorar os dados que envolvem as características comportamentais das famílias além de aspectos de forma urbana. As variáveis tomadas no presente trabalho totalizam um número de 123 e foram utilizadas na montagem da função utilidade que constitui a base para a entrada de dados do software Rstudio (identificadas no Anexo B2). Numa primeira etapa denominada "validação", selecionou-se as variáveis que apresentam significância ao problema em estudo e exclui-se as demais, melhorando assim a precisão das respostas e o esforço computacional. Na função utilidade identificam-se os pesos para cada variável com significância ao problema em estudo. Os pesos calculados são utilizados na avaliação da razão de chance ("odds ratio") de um usuário utilizar um determinado modal além da probabilidade de escolha dos mesmos.

Resultados Obtidos

6.0 RESULTADOS OBTIDOS

Nesta etapa procedeu-se a modelagem estatística com base nos dados obtidos com a pesquisa com os pais e levantamento dos dados da forma urbana dos bairros pesquisados.

Para conclusão final dos resultados a sequência das análises foi:

- 1 Dados coletados na pesquisa com os pais apresenta a análise descritiva dos dados coletados com a aplicação do questionário com os pais dos alunos e evidencia a percepção dos mesmos sobre as variáveis estudadas e citadas no capítulo 5 desta Tese.
- 2 Dados coletados variáveis da forma urbana o ítem apresenta todas as variáveis da forma urbana, levantadas *in loco* e com ajuda de mapas georeferenciados da cidade de Goiânia, dos bairros onde estão localizadas as escolas pesquisadas.
- 3 Escolha da influência da forma urbana sobre a escolha modal realizada para apresentar que variáveis são determinantes na escolha por um modo tendo como base os questionários e as variáveis da forma urbana levantadas. Utilizou-se um modelo multinomial construído para o problema proposto e por ser aquele que apresenta a melhor descrição das escolhas dos indivíduos (sendo, por isso, o mais usado na literatura) entre alternativas e opções, por meio das especificações das funções utilidade.

6.1 RESULTADO DA PESQUISA COM OS PAIS

Modo de Deslocamento até a Escola

No que se refere aos modos de transporte utilizados pelos indivíduos na condução das crianças até a escola, a presente Tese os dividiu em 4 modos representados pelo caminhamento (a pé), a bicicleta, o ônibus e outros meios de transporte (motos, carros e vans). Esta divisão foi definida na tentativa de distinguir os modais mais sustentáveis dos demais.

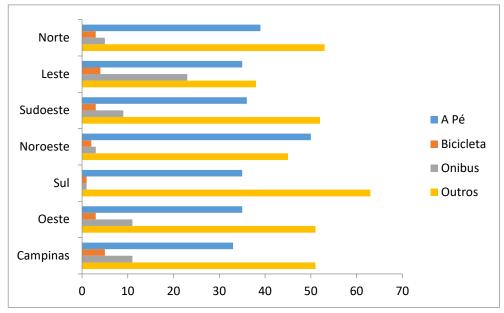


Figura 6.1 – Modo de transporte/região das famílias pesquisadas

Na figura 6.1 percebe-se que a condução de crianças através de outros meios de transporte (motos, carros e vans) tem predominância em quase todas as regiões administrativas de Goiânia com exceção da região Noroeste onde prevalece o modo caminhamento ("a pé"). Na região sul destaca-se a alta porcentagem de utilização de carros o que pode ser explicado pelo fato que nesta região administrativa se concentra a maior faixa de renda dos moradores de Goiânia. Dentre os modais estudados, a bicicleta é que apresentou as menores porcentagens de preferência entre os indivíduos pesquisados para todas as regiões administrativas de Goiânia. A utilização do transporte coletivo como preferência dos indivíduos na condução de crianças até a escola obteve uma porcentagem maior nas regiões leste (23%), campinas (11%) e oeste (11%) pelo fato de que nestas regiões se concentram o maior número de linhas de transporte público disponíveis (Anexo A-2). Nas demais regiões pesquisadas, a escassez de linhas pode explicar a baixa preferência dos indivíduos por este modo de transporte.

Na figura 6.2 é classificado o modo de transporte por rede de ensino. Pode-se observar no gráfico que a maior parte dos estudantes que utilizam o modo a pé, bicicleta e ônibus estão nas escolas estaduais e municipais. 46% dos estudantes das escolas estaduais e 51,5% dos alunos das escolas municipais se deslocam a pé. Entre os alunos das escolas particulares 82% se deslocam pelo modo outros (carro individual, moto ou van). Ainda sobre o modo outros, é importante ressaltar que 36% dos alunos das escolas municipais e 25% dos estudantes das escolas estaduais se deslocam por esse modo.

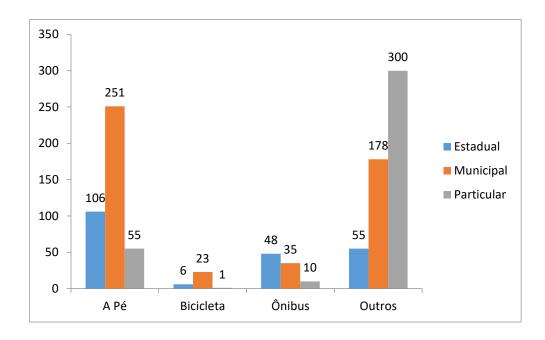


Figura 6.2 – Modo de transporte/rede das famílias pesquisadas

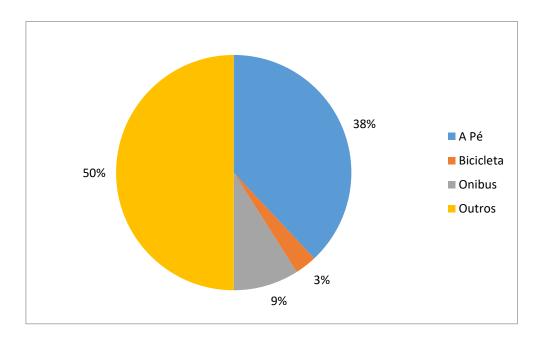


Figura 6.3 – Modo de transporte na cidade de Goiânia das famílias pesquisadas

Considerando toda cidade de Goiânia, a utilização de outros meios de transporte (50%) representado por motos, carros e vans de transporte escolar prevalece sobre as outras opções na escolha para condução das crianças até a escola, representando metade da preferência em relação aos demais modos de transporte. Destacam-se as baixas porcentagens encontradas para utilização do transporte coletivo e a bicicleta. O modo caminhamento como preferência na escolha para condução de crianças obteve uma porcentagem de 38% em relação aos demais modos.

Renda das Famílias

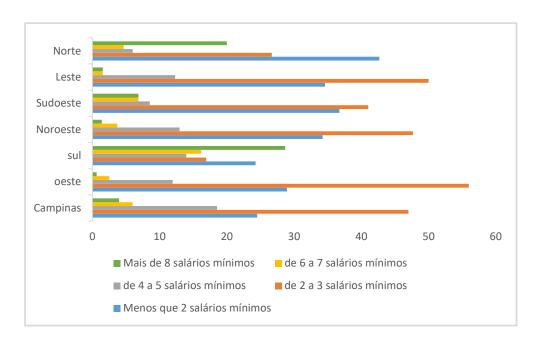


Figura 6.4 – Renda/região das famílias pesquisadas

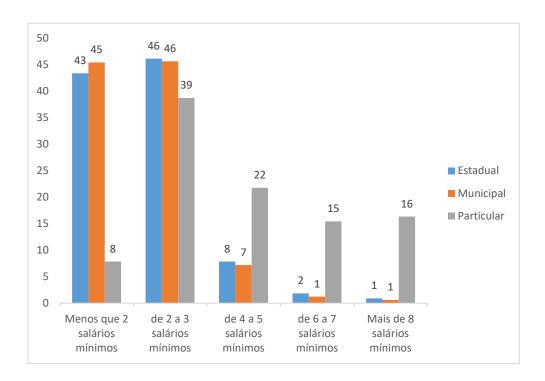


Figura 6.5 - Renda/rede das famílias pesquisadas

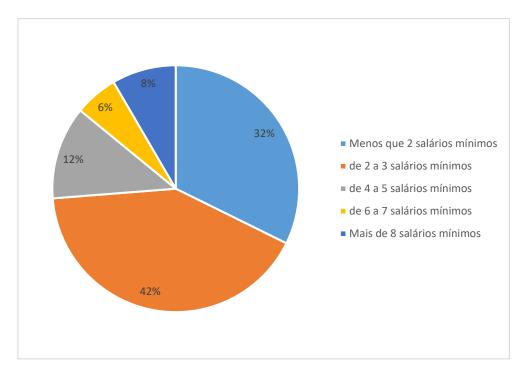


Figura 6.6 – Renda na cidade de Goiânia das famílias pesquisadas

Pode-se compreender melhor o processo da expansão urbana de Goiânia, o crescimento populacional e as características socioeconômicas a partir da história da cidade. Em 1947 a mancha urbana de Goiânia compreendia Campinas e o Setor Central, abrangendo também os Setores Sul, Oeste e Norte (Bairro Popular). Nesse ano existiam algumas ocupações às margens dos córregos Botafogo e Areião, que deram origem aos bairros Vila Nova e Nova Vila, e extrapolavam os limites do desenho original da cidade. (Ribeiro, 2004)

Entre as décadas de 1950 e 1960, ao contrário do que aconteceu na década anterior, houve uma explosão no número de bairros. Vários fatores contribuíram para tal fenômeno dentre eles: a liberação do processo de parcelamento à iniciativa privada, a revogação da obrigatoriedade de implantação de infraestrutura urbana mínima para a instalação dos loteamentos e a inexistência de um plano diretor que regulasse o crescimento da cidade (RIBEIRO, 2004). Os habitantes eram principalmente imigrantes oriundos de Minas Gerais, mas também das regiões Norte e Nordeste do Brasil.

Nesse período regiões como a Norte, Leste, Sudoeste e oeste foram intensamente loteadas e habitadas, com falta de articulação entre um loteamento e outro. Nesta perspectiva, o aumento de loteamentos em Goiânia gerou espaços segregados, haja vista a ausência de infraestrutura urbana, a carência de seus moradores e a distância e dificuldades de acesso ao centro da cidade. Observa-se no gráfico 5.10 que a renda

informada na pesquisa das regiões Leste, Campinas, Sudoeste, Noroeste e Oeste de 2 salários mínimos, pode ser herança dessa história da cidade.

Observando ainda o gráfico 6.4, chama atenção a renda informada pelos habitantes da região Sul – oito salários mínimos e que se diferencia das demais regiões. Faz-se oportuno, dessa forma, buscar na história da cidade esclarecimento para tal fenômeno.

Segundo MORAES (1991) foi na direção sul que prevaleceu a concentração da população de maior poder aquisitivo, além da instalação nesta Região de empreendimentos, serviços públicos e privados.

"... A expansão da cidade, a partir do plano piloto original, se deu predominantemente ao Sul. Esta tendência começou a tomar corpo e no período seguinte, de 1964 a 1975, se intensificou, para atingir sua expressão máxima no período de 1975 a 1985"

A Região Sul é caracterizada pelo adensamento de construções tanto verticais quanto horizontais, essas marcadas por casas luxuosas, como cita VAZ (2002). A atividade comercial é voltada para as camadas de média e alta renda. CHAVEIRO (2001), descreve que setores como Oeste, Sul, Bueno, Jardim Bela Vista, e uma pequena faixa do Jardim América, constituem o subcentro de renda alta como é o setor Bueno no limítrofe com o Nova Suíça e o Bela Vista.

Segundo MARINHO (2006) "a Região Sul, ao longo da produção do espaço urbano de Goiânia, sofreu intensa ocupação populacional e atraiu a instalação de atividades econômicas. Isso favoreceu a implantação de infraestrutura e os investimentos da construção civil no seu espaço, a partir da década de 1970. A estruturação e a verticalização da Região acabaram por promover a valorização dos terrenos aí localizados e, consequentemente, reforçaram sua posição de lugar "nobre" no imaginário do "goianiense."

Em sua história mais recente a região Noroeste iniciou seu processo de ocupação em 1979 com a invasão da Fazenda Caveiras, em três etapas. A primeira, deu origem ao bairro Jardim Nova Esperança, e pode-se dizer que a ocupação da região noroeste foi marcada por lutas sociais em busca do direito de morar. Atualmente é composta por bairros como Vila Finsocial, Vila Mutirão I, II e III, e Jardim Curitiba, já consolidados. Em suma a população que inicialmente habitou essa região eram os pobres e excluídos, e

que até os dias atuais figura como uma região carente de políticas públicas. MOYSÉS (2004)

A produção de espaços valorizados segregados nas metrópoles é questão de estudo nas mais variadas disciplinas do planejamento urbano, e essa valorização do espaço urbano é ocasionada pela sua localização na cidade. A desigualdade sócioespacial pode ser observada na paisagem urbana na maior parte das metrópoles brasileira e em Goiânia, esse feito não é diferente, bastando comparar a cidade de norte-sul.

Quanto a renda dividida por rede de ensino os maiores salários estão concentrados nas escolas particulares onde 60% dos pais ganham entre 2 a 5 salários mínimo. Na rede municipal 89% recebem de 1 a 3 salários e a estadual 91%. Considerando a renda na cidade de Goiânia entre os pais de alunos que cursam o ensino fundamental 74% ganham de 1 a 3 salários mínimos, 12% de 4 a 5 e apenas 6% de 6 a 7 salários.

Norte Leste Sudoeste Noroeste sul oeste Campinas 0 10 20 30 40 50 60 70 3 automóveis ■ 2 automóveis ■ 1 automóvel 0 automóvel

Número de Veículos no Domicílio

Figura 6.7 – Número de veículos/região das famílias pesquisadas

Quanto ao número de veículos por região, pode-se observar que grande parte das famílias tem pelo menos 1 veículo. A região Sul se sobressai dentre as demais, pois 35% das famílias dessa região afirmam possuir pelo menos 2 veículos, quase a mesma quantidade de famílias que possuem 1 veículo (37%), no entanto esta região, como mostrado anteriormente se destacou também como a major renda entre as famílias.

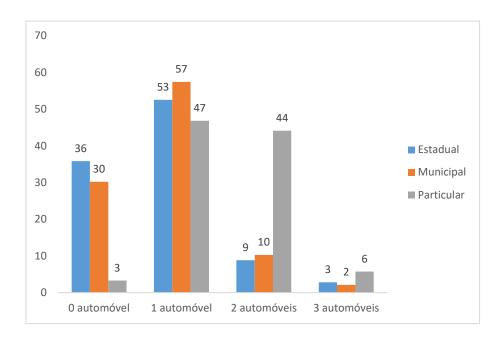


Figura 6.8 – Número de veículos/rede das famílias pesquisadas

Observa-se na figura 6.8 que mais da metade das famílias das redes estaduais e municipais, 53% e 57%, respectivamente, possuem pelo menos 1 veículo e que apenas 3% das famílias da rede particular não possuem nenhum veículo.

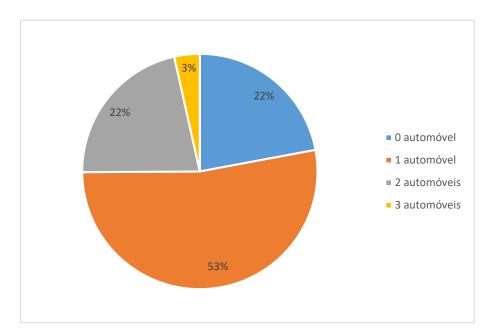


Figura 6.9 – Número de veículos na cidade de Goiânia das famílias pesquisadas

Em se tratando da cidade de Goiânia, observa-se que mais da metade das famílias que possuem filhos no ensino fundamental possuem pelo menos 1 veículo (53%), enquanto 22% dessas famílias não possuem nenhum veículo automotor.

Quem Acompanha Normalmente seu Filho até a Escola?

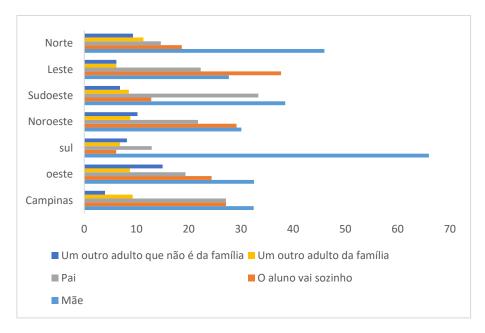


Figura 6.10 – Acompanhante das crianças até a escola/região das famílias pesquisadas

Os gráficos para essa variável mostram uma tendência que é mundial. Em todas as regiões a mãe é a principal responsável por acompanhar seu filho até a escola, fato já relatado no capítulo 2 e demonstram que Goiânia não está distante de uma realidade mundial. Na região Sul, 66% das mães conduzem seus filhos contra 13% dos pais. Já na região Leste 38% dos alunos vão à escola sozinho, 28% com a mãe e 22% com o pai.

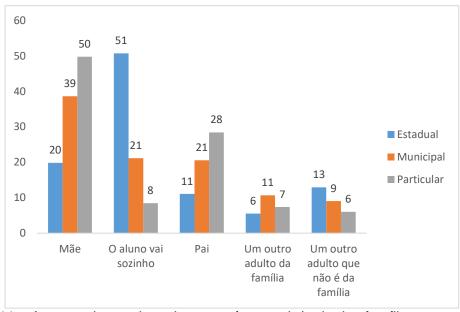


Figura 6.11 – Acompanhante das crianças até a escola/rede das famílias pesquisadas

Observando o comportamento por rede de ensino, observa-se que 50% dos alunos da rede particular são acompanhados pela mãe até a escola, 51% dos alunos da rede estadual vão sozinho e 39% dos alunos da rede municipal são acompanhados pela mãe. Em Goiânia 38% dos alunos vão até a escola acompanhados pela mãe enquanto 21% pelo pai.

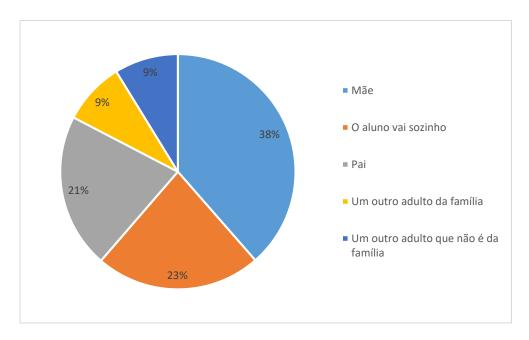


Figura 6.12 – Acompanhante das crianças até a escola na cidade de Goiânia das famílias pesquisadas

Analisando a cidade de Goiânia observa-se no gráfico 6.12 que 38% dos alunos se deslocam à escola acompanhados pela mãe, 23% seguem sozinho enquanto 21% são conduzidos pelo pai.

Idade das Crianças

Como citado anteriormente a pesquisa foi realizada com crianças do ensino fundamental cuja as idades variam de 6 a 14 anos. Tomou-se o cuidado de manter certas proporções para que todas as idades fossem pesquisadas. No entanto as escolas da rede estadual de ensino fundamental em Goiânia não foram contempladas na pesquisa com idade da criança variando de 6 a 8 anos. Um fato que pode explicar tal ausência, pode ser que as idades mencionadas (ciclo I) constam com maior número de vagas nas escolas municipais, portanto, as escolas estaduais oferecem um número reduzido de vagas para tal ciclo.

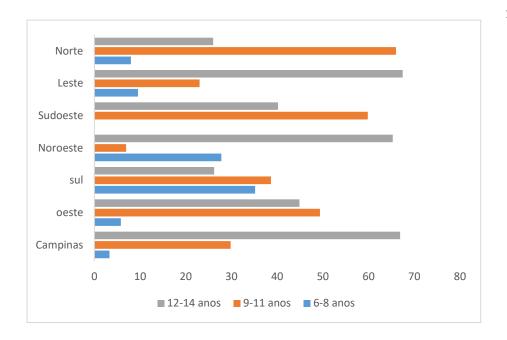


Figura 6.13 – Idade das crianças/região das famílias pesquisadas

No gráfico 6.13 é mostrado que o intervalo de idade 6-8 anos foi o menos pesquisado nas regiões Norte, Leste, Oeste e Campinas. O intervalo que compreende a idade 12-14 anos foi o maior entre os pesquisados das regiões Leste, Noroeste e Campinas.

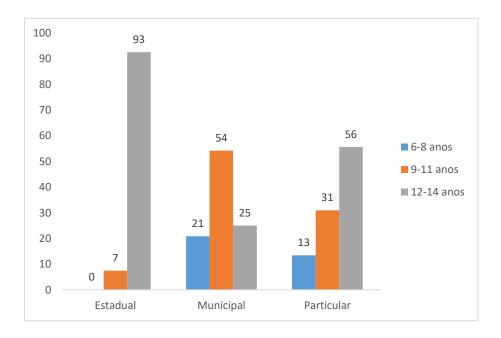


Figura 6.14 – Idade das crianças/rede das famílias pesquisadas

O gráfico da figura 6.14 demonstra que 93% dos alunos da rede estadual estão entre as idades de 12-14 anos o que poderia explicar a maior parte destes se deslocarem sozinhos até a escola e evidenciado no gráfico 6.11. No entanto 56% dos entrevistados

das escolas particulares também estão entre 12-14 anos de idade, e ainda assim, 78% destes são conduzidos pela mãe ou pai.

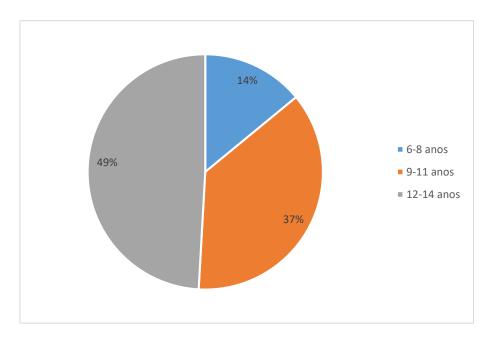


Figura 6.15 – Idade das crianças na cidade de Goiânia das famílias pesquisadas

As idades pesquisadas tomando Goiânia como referência, foi 49% de 12 a 14 anos, 37% de 9-11 anos e 14% de 6-8 anos.

Grau de Instrução dos Pais

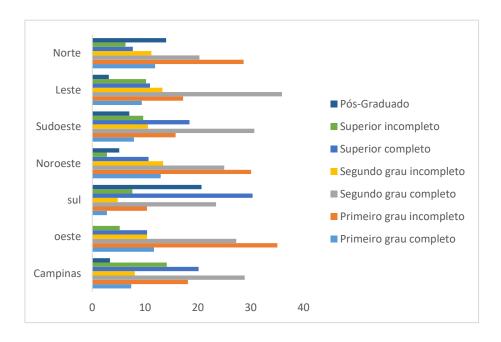


Figura 6.16 – Grau de Instrução dos pais/região das famílias pesquisadas

Os gráficos sobre o grau de instrução dos pais, mostram que a maior parte dos pais da região Norte, Noroeste e Oeste – 29%, 30% e 35% respectivamente possuem o primeiro grau incompleto, enquanto a maior percentagem dos pais da região Leste, Sudoeste e Campinas – 36%, 31% e 29% respectivamente possuem o segundo grau completo. Novamente a região Sul de destaca dentre as demais e evidencia que 30% dos pais entrevistados possuem nível superior completo.

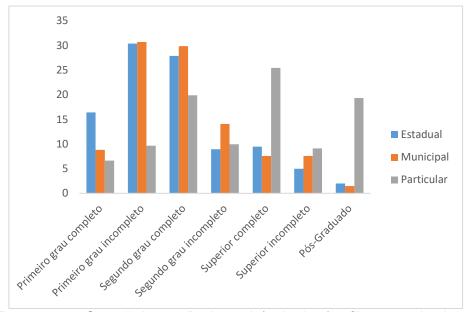


Figura 6.17 – Grau de instrução dos pais/rede das famílias pesquisadas

Pode-se observar no gráfico 6.17 a maior percentagem entre o menor grau de instrução (primeiro grau incompleto) está entre os pais da rede estadual e municipal, e dentre as percentagens para escola da rede particular, a maior 25% são dos pais que possuem nível superior completo

Figura 6.18 – Grau de instrução dos pais na cidade de Goiânia das famílias pesquisadas

Considerando a cidade de Goiânia, nessa pesquisa, as maiores percentagens para o grau de instrução foram 27% e 23%, respectivamente, e referem-se ao segundo grau completo e primeiro grau incompleto.

• Tempo de Deslocamento até a Escola

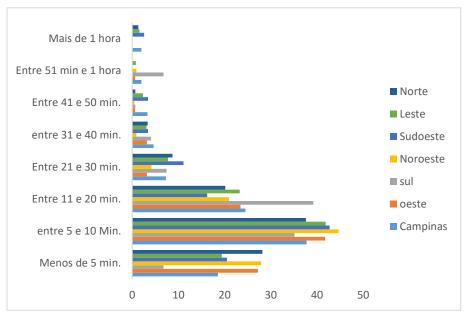


Figura 6.19 – Tempo de deslocamento até a escola/região das famílias pesquisadas

O gráfico 6.19 sobre o tempo de deslocamento por região administrativa revela que em todas as regiões, a maior percentagem para o tempo de deslocamento até a escola, estão entre 5-10 min

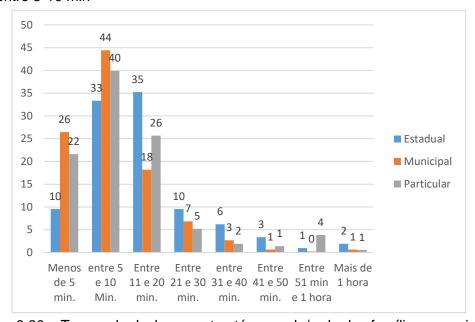


Figura 6.20 – Tempo de deslocamento até a escola/rede das famílias pesquisadas

O mesmo se repete quando a referência é a rede de ensino, e observa-se no gráfico 6.20 que a grande maioria dos entrevistados responderam que gastam entre 5 a 10 min. para chegar na escola.



Figura 6.21 – Tempo de deslocamento até a escola na cidade Goiânia das famílias pesquisadas

Em Goiânia 40% dos alunos do ensino fundamental gastam de 5 a 10 min. para chegar até a escola; 22% menos de 5 min. e 24% entre 11 e 20 min, sendo as percentagens mais significativas do gráfico 6.21. Fazendo uma avaliação entre os gráficos da pesquisa, observa-se que apesar da maior parte das crianças que cursam o ensino fundamental em Goiânia gastarem entre 5-10 min. para fazer tal deslocamento, o modo de transporte preferencial entre os pais é outros (automóvel, moto, van escolar) como evidencia o gráfico 6.3.

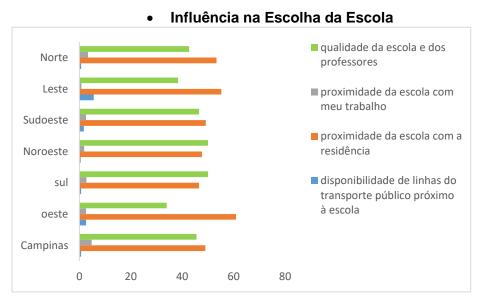


Figura 6.22 – Influência na escolha da escola/região das famílias pesquisadas

Quando perguntados o que influenciou a escolha da escola dos filhos, a maior parte dos pais da região Campinas, Oeste, Sudoeste, Leste e Norte (49%, 61%, 49%, 55% e 53% respectivamente) responderam que foi a proximidade da escola com a residência. Os pais da região Sul e Noroeste (50%) responderam que escolheram a escola de seus filhos pela qualidade da mesma e dos professores.

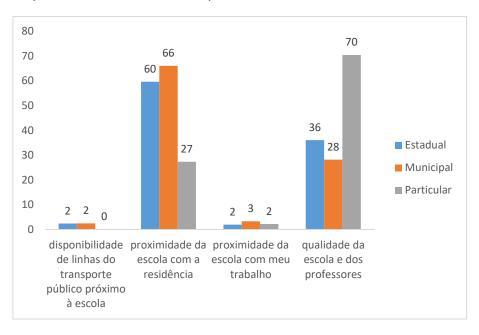


Figura 6.23 – Influência na escolha da escola/rede das famílias pesquisadas

Analisando a escolha da escola por rede de ensino pode-se observar pelo gráfico que mais de 60% dos pais das redes estaduais e municipais escolheram a escola dos seus filhos pela proximidade das mesmas com a residência. Entre os pais da rede particular, 70% fez a escolha da escola pela qualidade da mesma e dos professores.

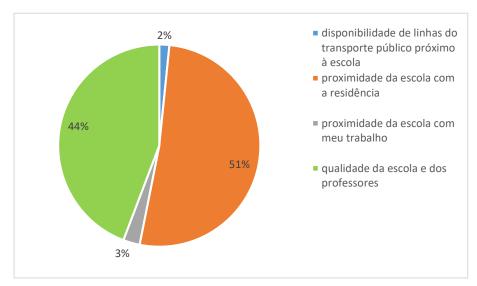


Figura 6.24 – Influência na escolha da escola na cidade de Goiânia das famílias pesquisadas

Em Goiânia a maior parte dos pais com filhos no ensino fundamental (51%) escolhem a escola de seus filhos pela proximidade da mesma com suas residências, (44%) pela qualidade da escola e dos professores, (3%) pela proximidade da escola com seus trabalhos e apenas (2%) pela disponibilidade de transporte público próximo à escola. Muitas pesquisas já mencionadas no capítulo 2 desse trabalho, descrevem a distância como uma variável influente na escolha do modo de transporte.

6.2 RESULTADOS OBTIDOS SOBRE A PERCEPÇÃO DOS PAIS QUANTO À IMPORTÂNCIA DAS VARIÁVEIS FORMA URBANA ASSIM COMO AS VARIÁVEIS MODERADORAS E MEDIADORAS NAS VIAGENS ESCOLARES EM GOIÂNIA

Os pais dos alunos estudados, foram perguntados também sobre uma série de fatores, que não são variáveis da forma urbana, no entanto, servem de moderadoras ou mediadoras no modelo de decisão de escolha dos pais sobre o modo de transportar seus filhos até a escola. Os gráficos a seguir mostram a percepção dos pais em relação às variáveis como: tráfego de veículo, iluminação pública, segurança do bairro, idade dos filhos, clima da cidade, atitude dos pais em relação às escolhas dos filhos e também sobre questões ligadas a forma urbana como distância da residência até a escola.

Percepção dos Pais Quanto as Variáveis da Forma Urbana

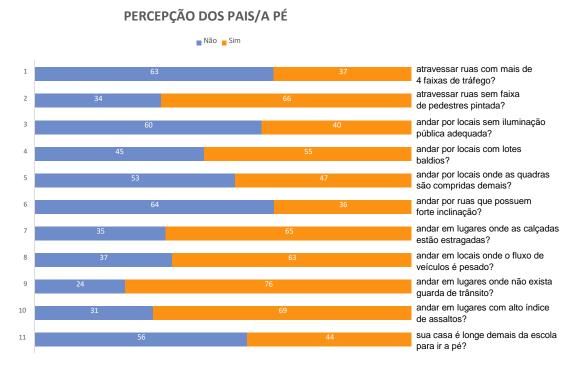


Figura 6.25 – Percepção dos pais quanto as variáveis da forma urbana nos deslocamentos a pé em Goiânia

No gráfico 6.25 observa-se que mais da metade dos alunos das escolas do ensino fundamental de Goiânia (63%) não atravessam ruas com mais de quatro faixas de tráfego para chegar até a escola. Por outro lado, segundo os pais pesquisados, 66% desses alunos atravessam ruas sem faixas de pedestre pintada no pavimento. Dos alunos estudados 60% não andam por locais sem iluminação pública adequada, 55% caminham por lotes vazios, 53% consideram que não caminham por quadras compridas demais e 64% consideram que não andam por ruas com forte inclinação. Quanto ao estado de conservação das calçadas 65% consideram que para chegar até a escola percorrem lugares com calçadas estragadas, 63% caminham por lugares com alto fluxo de veículos e 76% andam por locais onde não existe guarda de trânsito. Segundo os pais pesquisados 69% relataram que para se deslocar a pé seus filhos andam por locais com alto índice de assaltos e 56% destes não moram longe da escola o suficiente para não utilizar esse modo de deslocamento.

Não Sim atravessar ruas com mais de 4 faixas de tráfego? atravessar ruas sem faixa de pedestres pintada? andar por locais sem iluminação 3 pública adequada? andar por locais com lotes baldios? andar em ruas com rampas? andar em locais com alto fluxo 6 de veículos? andar em locais onde não existam ciclovias ou ciclofaixas? existe estacionamento de bicicleta na escola? é comum assalto a ciclistas na região?

PERCEPÇÃO DOS PAIS/BICICLETA

Figura 6.26 – Percepção dos pais quanto as variáveis da forma urbana nos deslocamentos por bicicleta em Goiânia

sua casa é longe demais para ir

de bicicleta a escola?

Segundo percepção dos pais quanto ao modo bicicleta, 64% consideram que seus filhos não atravessariam quatro faixas de tráfego se utilizasse esse modo para se deslocar até a escola. Já 57% dos pais consideram que seus filhos atravessam ruas sem faixa

de pedestre pintada, 59% não andam por locais sem iluminação pública, 51% atravessam lotes vazios, 63 % não percorrem ruas com forte inclinação. Quanto à segurança viária 61% pedalam por lugares com movimento intenso de fluxo de veículos e 63% não são servidos por ciclovias ou ciclofaixas. Metade dos pais pesquisados informaram que não existem estacionamentos para bicicleta na escola do seu filho, 58% relatam que é comum assaltos no bairro onde moram e 65% afirmam que sua casa não é longe demais da escola para que seu filho se desloque de bicicleta até ela.

PERCEPÇÃO DOS PAIS/ÔNIBUS Não Sim pegar ônibus lotado? andar demais até a parada de ônibus mais perto de casa? andar demais até a parada de ônibus mais perto da escola? esperar demais nas paradas pelos ônibus? é seguro andar de ônibus até a escola? é confortável ir de ônibus até a escola? as paradas de ônibus são pequenas? existem informações sobre linhas e horários nas paradas e terminais? você considera que existem muitos terminais no caminho de sua casa até a escola?

Figura 6.27 – Percepção dos pais quanto as variáveis da forma urbana nos deslocamentos por ônibus/Goiânia

Quanto à utilizar o ônibus para deixar o filho na escola 54% responderam que pegariam ônibus lotado para fazer essa viagem, 67% não precisariam andar demais até a parada mais próxima da residência nem tampouco da parada mais perto da escola. Dos pais entrevistados, 60% afirmam que precisariam esperar muito até a chegada do ônibus, ou seja, a frequência dos ônibus em Goiânia não é satisfatória segundo percepção destes. Quando o assunto é segurança, 73% dos pais relataram não ser seguro viajar de ônibus até a escola e 84% diz não ser confortável tal deslocamento. Segundo os entrevistados 56% afirmam que as paradas de ônibus são pequenas demais e não abrigam do calor ou chuva, 70% relatam não existir informações sobre os horários de partida e chegada dos ônibus nas paradas e terminais e 87% não consideram existir muitos abrigos na rota entre a escola e a residência.

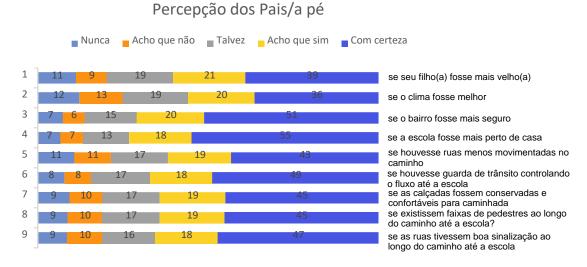


Figura 6.28 – Percepção dos pais quanto as variáveis moderadoras/mediadoras deslocamentos a pé/Goiânia

O gráfico 6.28 evidencia que quando perguntados sobre questões como idade dos filhos; clima; segurança do bairro; distância da escola até a residência; segurança do tráfego; agentes de trânsito; condição das calçadas; faixas de pedestre; sinalização viária, a grande maioria dos entrevistados (36% a 55%) responderam que "com certeza" deixariam seu filho se deslocar a pé até a escola se existissem boas condições para todas as variáveis

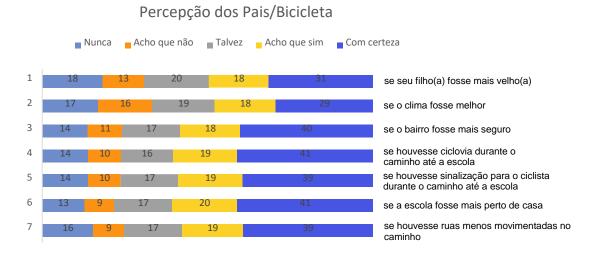


Figura 6.29 – Percepção dos pais quanto as variáveis moderadoras/mediadoras deslocamentos por bicicleta/Goiânia

O mesmo fato se observou para os deslocamentos realizados por bicicletas e a maior parte dos entrevistados responderam que "com certeza" deixariam seus filhos se deslocarem de bicicleta até a escola se as variáveis: idade da criança; clima; segurança do bairro; ciclovias; sinalização para ciclistas; distância da escola até a residência; segurança do tráfego, se todas estivessem em boas condições.

Percepção dos Pais/ônibus

Figura 6.30 – Percepção dos pais quanto as variáveis moderadoras/mediadoras deslocamentos por ônibus/Goiânia

Para os deslocamentos realizados por ônibus, a maior parte dos entrevistados (41% a 49%), responderam que "com certeza" deixaria seu filho se deslocar por esse modo até a escola se as variáveis: idade da criança; paradas de ônibus maiores e segura; paradas próximas da residência; paradas próximas da escola; maior número de linhas de ônibus; tempo de deslocamento; pontualidade; lotação; frota renovada; conforto; segurança; pontualidade; se todas estivessem em boas condições.

Figura 6.31 – Percepção dos pais quanto à importância das variáveis forma urbana – moderadoras - mediadoras no deslocamento a pé/Goiânia

Observa-se no gráfico que os pais consideram "muito importante" no deslocamento a pé das crianças até a escola, questões como: saúde; abordagem de estranhos; distância da escola à residência; segurança do tráfego; segurança do bairro; clima. Apesar de 30% dos entrevistados considerarem "muito importante" a educação dos filhos sobre o deslocamento a pé, 24% dos mesmos, consideram que "não é importante" tal fator. 32% dos pais declararam ainda que o filho não gostar de ir a pé até a escola "não é um fator importante". 40% consideram "muito importante" o fato de ao sair de casa ainda estar muito cedo e escuro para andar a pé.

Figura 6.32 – Percepção dos pais quanto à importância das variáveis forma urbana – moderadoras - mediadoras no deslocamento bicicleta/Goiânia

Quanto aos deslocamentos realizados por bicicleta 42% dos pais responderam ser "importante" para a saúde do filho utilizar tal modo nas viagens escolares. 53% revelaram ser "muito importante" as questões de segurança de tráfego na utilização da bicicleta pela criança; 36% e 52% consideram "muito importante" questões ligadas a distância e segurança do bairro. 27% julgam o clima um fator "muito importante", no entanto, 22% acreditam que tal fator "não é importante". Quanto à educação do filho sobre o deslocamento por bicicleta, 27% responderam ser um fator "muito importante", entretanto, 27% consideram "não é importante" tal variável. 41% relatam ser "muito importante" o fato de ao sair de casa ainda estar muito cedo e escuro para se deslocar de bicicleta até a escola.

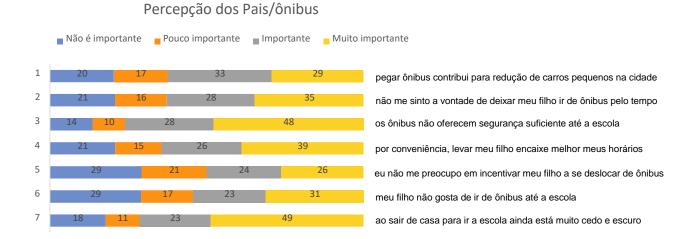


Figura 6.33 – Percepção dos pais quanto à importância das variáveis forma urbana – moderadoras - mediadoras no deslocamento ônibus/Goiânia

Quanto ao deslocamento ser realizado por ônibus, 29% dos entrevistados consideram ser "muito importante" o fato de estar contribuindo para diminuição do tráfego nas ruas, 33% consideram "importante" e 20% "não importante". Os pais julgam "muito importante" questões como tempo de deslocamento; segurança; conveniência para os deslocamentos realizados por ônibus. Quanto à educar seu filho sobre as viagens por ônibus 29% consideram "não importante". 49% relatam ser "muito importante" o fato de ao sair de casa ainda estar muito cedo e escuro para se deslocar d e ônibus até a escola.

6.3 RESULTADOS DO LEVANTAMENTO DA FORMA URBANA

Tabela 6.1 – Variáveis da forma urbana – bairros de Goiânia pesquisados

	Area do	Comp	Densida		Densidad	Comp		Número de	Número	Densidad		Largura	Linhas do Transporte Urbano		Rotas Cicláveis (Km)		
Setor	Setor (km2)	total das vias (km)	de de vias	total de quadras	e de guadras	médio das quadras	interseções em cruz	interseçoe s em T	total de intersecõe	e de Interseçõ	Conectividade	média das calcadas	Atendem	Margeiam	Ciclovia	ciclorrota	ciclofaixa
Campinas	2,120	52,065	24,559	204	96,226	0,426	151	49	200	94,34	0,76	3,15	25	2	0,00	0,00	0,00
Vila Paraiso	0,150	2,423	16,153	13	86,667	0,407	6	5	11	73,33	0,55	2,50	0	9	0,00	0,00	0,00
Cidade Jardim	2,787	73,404	26,338	70	25,117	0,557	54	50	104	37,32	0,52	3,40	14	10	0,00	0,00	0,00
Parque Ateneu	1,859	43,841	23,583	234	125,874	0,337	76	204	280	150,62	0,27	2,08	10	0	0,00	0,00	0,00
Parque das Laranjeir	0,807	18,554	22,991	59	73,110	0,422	10	15	25	30,98	0,40	2,06	8	2	0,00	0,00	0,00
Jardim Novo Mundo	6,494	153,044	23,567	188	28,950	0,457	123	183	306	47,12	0,40	3,00	33	3	0,00	0,00	0,00
Jardim Curitiba II	3,530	63,900	18,102	192	54,391	0,433	87	143	230	65,16	0,38	2,50	2	8	0,00	0,00	0,00
Capuava	1,627	31,103	19,117	71	43,639	0,554	63	40	103	63,31	0,61	2,00	22	1	0,00	0,00	0,00
Parque Tremendão	1,959	30,748	15,696	109	55,641	0,548	30	106	136	69,42	0,22	2,30	4	2	0,00	0,00	0,00
Conjunto Itatiaia I	0,918	20,503	22,334	53	57,734	0,465	34	96	130	141,61	0,26	2,49	13	0	0,00	0,00	0,00
Jardim Liberdade	0,240	0,342	1,425	25	104,167	0,419	17	35	52	216,67	0,33	2,54	4	0	0,00	0,00	0,00
Setor Jaó	3,008	54,132	17,996	154	51,197	0,416	133	163	296	98,40	0,45	2,76	2	6	0,00	0,00	0,00
Bairro Goià	0,719	10,711	14,897	47	65,369	0,521	22	25	47	65,37	0,47	3,43	4	1	0,00	0,00	0,00
Carolina Parque	0,359	6,515	18,148	23	64,067	0,508	3	27	30	83,57	0,10	2,70	2	0	0,00	0,00	0,00
Conjunto Vera Cruz	5,118	110,267	21,545	215	42,009	0,512	30	215	245	47,87	0,12	2,60	15	2	0,00	0,00	0,00
Jardim Presidente	1,461	38,470	26,331	88	60,233	0,554	42	59	101	69,13	0,42	2,50	12	1	0,00	0,00	0,00
Jardim Europa	0,321	6,174	19,234	97	302,181	0,513	69	50	119	370,72	0,58	2,39	31	0	0,00	0,00	0,00
Setor Faiçalville	3,773	85,157	22,570	179	47,442	0,514	63	167	230	60,96	0,27	2,90	6	9	0,00	0,00	0,00
Setor Pedro Ludovico	3,222	77,821	24,153	156	48,417	0,573	103	86	189	58,66	0,54	4,10	27	1	1,40	1,1	0,00
Alto da Glória	0,286	4,332	15,147	17	59,441	0,543	10	19	29	101,40	0,34	3,00	7	9	0,00	0,00	0,00
Setor Bueno	4,160	113,830	27,363	166	39,904	0,586	128	64	192	46,15	0,67	3,00	28	3	0,00	0,00	0,00

Fonte: Autora

Comprimento Médio das quadras

Segundo a literatura descrita no capitulo 2, comprimento de quadras aceitáveis para promover o deslocamento a pé variam de 0,10 a 0,20 km ou ainda menores. Quadras que possuem dimensões menores representam um aumento no número de interseções, resultando em um número maior de rotas e distâncias relativamente mais curtas de caminhadas. Conforme pode-se observar na Tabela 6.1, nenhum dos bairros estudados possuem essas dimensões de quadra. O menor valor foi de 0,337 km do bairro Parque Ateneu região Leste de Goiânia.

• Densidade de quadras

Um valor mais alto da densidade de quadras representa, um número maior de quadras no setor e, portanto, uma maior variedade de caminhos aos pedestres. Segundo Tabela 6.1, os setores que tem os maiores valores de densidade de quadra são 302,181; 125,874; 104,167 correspondentes aos bairros Jardim Europa, Parque Ateneu e Jardim Liberdade respectivamente. O menor valor foi de 25,117 correspondente ao bairro Cidade Jardim.

Número de interseções em cruz e em T

Um sistema viário na forma de grelha representa um maior número de intersecções em "cruz", ao contrário se um sistema viário não é em forma de grelha significa que o mesmo possui um número maior de intersecções em "T" e cul-de-sacs em sua configuração.

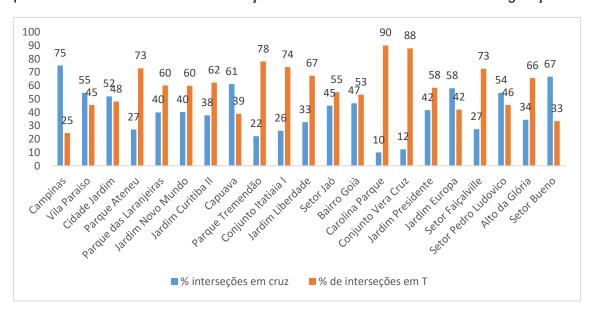


Figura 6.34 – % de interseções em Cruz e T dos bairros pesquisados

Pode-se observar na figura 6.34 que os setores que nasceram juntamente com a cidade de Goiânia, possuem o sistema viário em formato em cruz ou em "grelha" como é o caso de Campinas e Setor Bueno. O Parque Tremendão, tem sua configuração em forma de T, criado em uma disputa por moradia entre população e governo, já citado anteriormente. Dos bairros sorteados apenas 33% possuem sua configuração em forma de cruz e 67% em forma T.

Isso não indica que essa seja a configuração da cidade, ao contrário, Medeiros (2006) em seu trabalho apontou que as cidades brasileiras são predominantemente regulares e compostas por grelhas de padrões diversificados, o que remete a composição de grelhas, indício do padrão em colcha de retalhos. Conclui ainda que "(...), a cidade cresce, mas as partes não se articulam propriamente entre si ou com o todo. São como montagens pouco conectadas. Partes frouxas de um inteiro mambembe".

Ainda segundo Dias (2014), durante o crescimento da cidade de Goiânia não houve uma aparente preocupação quanto à conexão entre os bairros existentes e os que estavam sendo planejados e implantados, dessa forma, a malha é caracterizada pela associação de diversos padrões e desenhos, ainda que regulares, formando uma composição de grelhas.

Conectividade

Esse índice pode variar entre 0 e 1 e quanto mais próximo de 1 estiver, representa uma configuração do sistema viário em forma de grelha. Muitos estudos indicam esse tipo de padrão viário como sendo o mais eficiente para incentivar as viagens a pé, pois apresentam uma maior variedade de opções de rotas.

Pode-se observar na Tabela 6.1 que os setores com o maior valor de conectividade é Campinas e Setor Bueno com valores 0,76 e 0,67 respectivamente. Os menores valores são Conjunto Vera Cruz e Parque Tremendão com valores 0,12 e 0,22 respectivamente.

• Largura Média das calçadas

Segundo dados levantados com auxílio de um mapa digital de Goiânia, pode-se observar na tabela que as calçadas dos 21 bairros residenciais estudados possuem largura superior a 1,5 m, valor este recomendado pela literatura e já inserido no Projeto

de Lei das calçadas do município, a ser votado. Ressalta-se, no entanto, que esta medida foi retirada com a ajuda de um SIG, e apresenta apenas o valor total da largura da mesma, não sendo indicado: implantação de mobiliários urbanos, árvores, inclinação ou estado de conservação das mesmas.

• Linhas do Transporte Urbano

Representa uma medida da quantidade de linhas do transporte coletivo que atravessam e margeiam o bairro e fornece uma medida da acessibilidade ao serviço na área urbana. Uma maior cobertura do serviço implica maior acessibilidade e maior oferta de transporte coletivo.

Observando os dados da Tabela 6.1 os bairros que são melhor atendidos com as linhas do transporte público são: Jardim Novo Mundo, Jardim Europa, Setor Bueno, Setor Pedro Ludovico, Campinas com valores de linhas que atendem o bairro de 33, 31, 28, 27 e 25 respectivamente. Os menores valores são dos setores: Vila Paraiso, Jardim Curitiba II, Setor Jaó, Carolina Park e Parque Tremendão com valores 0, 2, 2, 2 e 4.

Ciclovia, ciclofaixa e ciclo rota

Dentre os 21 bairros residenciais estudados apenas 1 possui ciclovia e ciclofaixa instaladas – Setor Pedro Ludovico, com medidas de 1,40 e 1,10 km respectivamente.

6.4 RESULTADOS SOBRE AS ESCOLHAS DOS DIFERENTES MODOS

Os resultados obtidos através do processamento do modelo multinomial construído para o problema proposto, como citado no Capítulo 5, se resumiu nas seguintes etapas:

- 1. Montar as equações da função utilidade;
- 2. validar o modelo;
- analisar as variáveis que apresentam influência positiva ou negativa na escolha dos indivíduos
- **4.** avaliar a razão de chance (*odds ratio*) para as variáveis que apresentam uma significância satisfatória e,
- 5. analisar as probabilidades de escolha.

Tabela 6.2 - Resultados do processamento completo - R-Studio®

	Estimate		or z-value Pr(> z)
(Intercept):1	8.24614		
(Intercept):2	11.07325	1.48722	7.446 9.65e-14 ***
(Intercept):3	6.97143	2.17163	3.210 0.001326 **
V3Municipal:1	-0.43980	0.42455	-1.036 0.300239
V3Municipal:2	-0.87742	0.39850	-2.202 0.027677 *
V3Municipal:3	0.06779	0.65728	0.103 0.917857
V3Particular:1	2.35639	0.51168	4.605 4.12e-06 ***
V3Particular:2	0.11455		0.222 0.824174
V3Particular:3	-0.96611		-0.816 0.414301
V180 aluno vai sozinho:1	-4.49721		-7.602 2.91e-14 ***
V180 aluno vai sozinho:2	-2.93664		-5.051 4.40e-07 ***
V180 aluno vai sozinho:3	-2.69768		-3.799 0.000145 ***
V18Pai:1	0.41732		0.462 0.644284
V18Pai:2	-0.99134		-1.070 0.284652
V18Pai:3	-2.00785		-1.442 0.149228
V18Um outro adulto da família:1	-1.10884		-1.518 0.128913
V18Um outro adulto da família:1			-2.162 0.030648 *
	-1.61878		
V18Um outro adulto da família:3	-1.93905		-1.961 0.049876 *
V18Um outro adulto que não é da família:1			-1.699 0.089252 .
V18Um outro adulto que não é da família:2			-4.057 4.97e-05 ***
V18Um outro adulto que não é da família:3			-0.029 0.976780
V18Vizinhos:1	-2.97845		-3.844 0.000121 ***
V18Vizinhos:2	-1.88058		-2.458 0.013977 *
V18Vizinhos:3	-2.51332		-1.968 0.049013 *
V47sim:1	-0.10084		-0.292 0.770030
V47sim:2	-1.77261		-5.184 2.17e-07 ***
V47sim:3	-0.98730		-1.738 0.082197 .
V55sim:1	-0.85760		-2.742 0.006113 **
V55sim:2	-0.84831	0.30119	-2.817 0.004855 **
V55sim:3	-0.62088	0.49883	-1.245 0.213253
V91Muito importante:1	-0.29140	0.37746	-0.772 0.440114
V91Muito importante:2	-0.10873	0.36602	-0.297 0.766428
V91Muito importante:3	-1.12967	0.58641	-1.926 0.054052 .
V91Não é importante:1	1.56100	0.51885	3.009 0.002625 **
V91Não é importante:2	2.12097	0.49952	4.246 2.18e-05 ***
V91Não é importante:3	0.75417	0.71449	1.056 0.291176
V91Pouco importante:1	2.16347	0.71378	3.031 0.002438 **
V91Pouco importante:2	2.52486	0.69821	3.616 0.000299 ***
V91Pouco importante:3	0.86751	1.02791	0.844 0.398696
V100Muito importante:1	-0.86328		-1.827 0.067665 .
V100Muito importante:2	-0.58182		-1.264 0.206157
V100Muito importante:3	0.22234		0.331 0.740635
V100Não é importante:1	-2.02250		-4.065 4.81e-05 ***
V100Não é importante:2	-2.18988		-4.477 7.58e-06 ***
V100Não é importante:3	-1.40168	0.76116	
V100Nao e importante:3 V100Pouco importante:1	-1.62564		-3.161 0.001573 **
V100Fouco importante:1	-1.69444		-3.377 0.000733 ***
V100Pouco importante:3	-1.49173		-1.757 0.078964 .
V110:1	-0.17666		-3.397 0.000682 ***
			-5.528 3.24e-08 ***
V110:2	-0.28262		
V110:3	-0.24131		-2.896 0.003785 **
V121:1	0.07135		1.230 0.218870
V121:2	0.10169		1.783 0.074626 .
V121:3	0.18795	0.07558	2.487 0.012887 *

A tabela 6.2 apresenta os resultados do processamento do modelo completo envolvendo todas as variáveis identificadas com significância no modelo. A significância foi observada avaliando os valores de probabilidades Pr(>|z|), também conhecido como P_valor . São considerados significativos valores de Pr(>|z|) < 0,1. O software R-Studio $\mathbb R$ 0 identifica com um asterisco os valores que atendem a esta relação. Um asterisco já

identifica significância da variável, no entanto, quanto maior o número de asterisco, maior significância tem a variável no modelo.

Tabela 6.3 – Variáveis do modelo completo – R-Studio®

Variável	Item do Questionário	Respostas Possíveis
V3	Relacionada à rede ou âmbito da escola da	Municipal – Particular - Estadual
	criança	
V18	Relacionada ao tipo de Acompanhante que	Mãe – Pai - Adulto da família
	conduz a criança até a escola	Adulto que não é da família –
		Vizinhos – Vai sozinho
V47	Relacionada à distância da residência à escola e	Sim
	a escolha do modal bicicleta	Não
V55	Relacionada às informações das linhas de partida	Sim
	e chegada de ônibus	Não
V91	Relacionada à distância da residência à escola e	Não é importante - Pouco importante -
	a escolha do modal caminhamento	Importante – Muito Importante
V100	Relacionada ao incentivo à criança em ir a pé até	Não é importante – Pouco importante –
	a escola	Importante – Muito Importante
V110	Relacionada à densidade de vias	valor
V121	Relacionada às linhas de transporte público que	valor
	margeiam o setor	

Na tabela 6.3 é apresentado um resumo das variáveis apresentadas na tabela final do programa R-Studio®. Dentre as 123 variáveis que abasteceram o modelo de decisão apenas 8 apresentaram significância e dessa forma, influenciam a decisão dos pais quanto a escolha do modo de transporte até a escola.

Além do processamento global de todas as variáveis em um único modelo, foi adotado o processo de forma independente de cada variável da forma urbana e que apresentaram respostas com significância. As variáveis independentes estudadas foram as seguintes:

Tabela 6.4 – Variáveis da forma urbana avaliadas de maneira independente R-Studio®

V108 – área do setor	V109 - Comp. Das Vias	V110 – Densidade de Vias
V111 – Núm. De Quadras	V112 – Densidade Quadras	V113 – Comp. De Quadras
V114 – Interseções em Cruz	V115 – Interseções em T	V116 – Núm. Interseções
V117 – Densidade de interseções	V118 - Conectividade	V119 – Largura das Calçadas
V120 – Linhas de ônibus Atendem	V121 – Linhas de ônibus margeiam	

Os resultados do processamento independente, para cada variável estão organizados na tabela 6.4 onde, para cada variável com significância (V108 á V111 e V118 á V121), encontra-se uma função de utilidade relacionada aos modos de transporte.

Tabela 6.5 – Resultados do processamento independente – R-Studio®

```
V108 – Área do seto
  ;Estimate;Std. Error;z value;Pr(>|z|
  (Intercept):1;146,421,111,865,776;0,180879710208866;809,494,396,561,669;5.73E-03 (Intercept):2;197,148,398,796,919;0,17928542706609;109,963,426,488,782;3.98E-14
  (Intercept):3;-0,305535684196357;0,290047396990732;-105,339,915,946,951;0,292158089257449
 dadosf[, i]:1;0,146798140558744;0,0667771033783628;219,833,046,256,855;0,0279255650962854 dadosf[, i]:2;-0,254042920489832;0,0714964423516959;-35,532,246,379,502;0,000380539359236195
 dadosf[, i]:3;-0,562377606630169;0,178552483740275;-314,964,874,668,567;0,00163466869704641
  ""; "Estimate"; "Std. Error"; "z value"; "Pr(>|z|) '
 "";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
(Intercept):1";1,49909579835147;0,174165468490093;8,60730781680033;7,47964024686707e-18
"(Intercept):2";2,0116614303885;0,173051952883309;11,6246098172899;3,09001950172668e-31
"(Intercept):3";-0,288070926759263;0,28269858164659;-1,01900379224183;0,308201166172785
"dadosf[, i]:1",0,00582150325072317;0,00277943262610955;2,0944933854618;0,0362160516841319
"dadosf[, i]:2";-0,0129473070518415;0,00305172693793438;-4,24261649720376;2,20928790238411e-05
"dadosf[, i]:3";-0,0273625904411309;0,00844103352230138;-3,24161613253144;0,00118853997246573
V110 - Densidade de Vias
"";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
"(Intercept):1";3,29728634494682;0,634744957810868;5,19466331220435;2,05090667986365e-07
"(Intercept):2";6,01887268346176;0,658292269743518;9,14316172329779;6,06525912476439e-20
 "(Intercept):3",4,08283639234096;1,16331511735667;3,50965643910667;0,000448686029209108
"dadosf[, i]:1";-0,0700484758805788;0,0285681594578852;-2,45197720856253;0,0142073660416452
"dadosf[, i]:2";-0,221459020639628;0,0304366970834841;-7,27605298407359;3,4372863221776e-13
"dadosf[, i]:3";-0,259159364611474;0,0603876028078961;-4,29159881434451;1,77391230992179e-05
                                     otal de Quadras
 "";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
"(Intercept):1";2,21754633968592;0,237630297298357;9,33191754122866;1,03972554922885e-20
 (Intercept):2",2,4273168594128;0,238729069969675;1,33137482;1,42200705190823e-24

"(Intercept):3",0,288618409463347;0,359554266001756;0,802711681529425;0,422141399523596

"dadosf[, i]:1",-0,00345881177486505;0,00162156801104068;-2,13300444465803;0,0329243615940399

"dadosf[, i]:3",-0,00142914222684549;0,00355072129282351;-4,02493496105702;5,69910643497139e-05
V118 - Conectividade
 "";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
"(Intercept):1";1,5940220774488;0,272976812564145;5,83940468230878;5,23876782405614e-09
 "(Intercept): 1";1,53405/2007/448870,2/29/6812564145;5,839404682308/87;,238/6/82405614e-09
"(Intercept): 2";1,531805/200825;0,277168692438971;5,52661668460186;3,26465166370547e-08
"(Intercept): 3";-1,42331199091757;0,523348643430564;-2,71962487871895;0,00653560117076705
"dadosf[, i]: 1"; 0,507862707425381;0,634081270061943;0,800942610047081;0,423164870775428
"dadosf[, i]: 2"; 0,0201592711363133;0,646904086240341;0,0311626894389775;0,975139794967584
"dadosf[, i]: 3"; 0,835392068507409;1,17089947004326;0,713461821343674;0,475560029912929
V119 - Largura Média das Calçadas
"";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
"(Intercept):1";-0,447741011479241;0,766337983463651;-0,584260497509946;0,559045064781651
    (Intercept):2";1,18751884416816;0,78171898620339;1,51911219393;0,128734257885132
(Intercept):3";0,614445020759532;1,47868614702984;0,415534440485384;0,677750708348036
 "dadosf[, i]:1";0,852728804461624;0,29385535916121;2,90186575768324;0,00370947463028963
"dadosf[, i]:2";0,136946010666739;0,301403824707028;0,454360560287694;0,649569334254009
  "dadosf[, i]:3<mark>";-0,677093026594224</mark>;0,587901296107317;-1,15171208343556;0,249439405207484
 V120 - Linhas de ônibus que atendem o setor
"","Estimate","Std. Error","z value","Pr(>|z|)"
"(Intercept):1";1,85227687587079,0,184305919439111;10,0500129431964;9,18553557836742e-24
"(Intercept):2";1,98725193429711;0,185370485779079;10,7204333308242;8,16200357564318e-27
  "(Intercept):3";-0,35666620484371;0,303885248822084;-1,17368712771092;0,2405203680492
"dadosf[, i]:1<mark>";-0,00412627202276833</mark>;0,0103626605479657;-0,39818654713903;0,69049268168204
"dadosf[, i]:2<mark>";-0,0377068814660191</mark>;0,0109004170789705;-3,45921455966712;0,000541753157454269
  "dadosf[, i]:3<mark>";-0,0707084933591832</mark>;0,0251447150835561;-2,81206182389493;0,00492250409334569
             - Linhas de ônibus que margeiam o setor
 "";"Estimate";"Std. Error";"z value";"Pr(>|z|)"
"(Intercept):1";1,36197572042726;0,14603636079174;9,32627814773856;1,09653869470388e-20
"(Intercept):2";1,23067089838687;0,148320029026873;8,29740195212539;1,06412859100569e-16
 "(Intercept):3";-1,59338225300719;0,296514532922551;-5,37370710737939;7,71341151619244e-08
"dadosf[, i]:1";0,157401087459579;0,0410188484104193;3,83728684639515;0,000124401132075306
"dadosf[, i]:2";0,120861515547175;0,0416947102552742;2,89872539723157;0,00374682890445192
                          i]:3";<mark>0,176610891757784</mark>;0,0630450912057004;2,80134247377875;0,0050890479882558
```

As variáveis da forma urbana relacionadas a ciclovia, ciclofaixa e ciclorota não foram analisadas, pois apresentaram baixa significância. Esse fato pode ser explicado devido os dados relacionados a essas variáveis, na maior parte, tem o valor nulo. Dessa forma os valores dessas variáveis foram negligenciados quando na montagem da função utilidade. Na tabela 6.5 anterior destacam-se às variáveis com maior significância nas

respostas e os respectivos estimadores (destacados em amarelo), utilizados para a avaliação da razão de chance, *OR*, identificada na estatística como "*odds ratio*":

$$OR = \frac{\frac{(\frac{e^{\beta_0 + \beta_1}}{1 + e^{\beta_0 + \beta_1}})}{(\frac{1}{1 + e^{\beta_0}})}}{\frac{(\frac{e^{\beta_0}}{1 + e^{\beta_0}})}{\frac{1}{1 + e^{\beta_0}}}} = \frac{e^{\beta_0 + \beta_1}}{e^{\beta_0}} = e^{(\beta_0 + \beta_1) - \beta_0} = e^{\beta_1}$$

$$6.1$$

Resultados do Processamento do Modelo Completo

Com relação à rede de ensino onde a criança está matriculada, os resultados demonstram para variável V3 (rede) que:

- O aluno ser da rede municipal diminui em 36% a chance de usar outros meios de transporte em relação ao aluno da rede estadual (β =-0,43980 ; OR = -36%);
- O aluno ser da rede municipal diminui em 58% a chance de ir a pé para a escola em relação ao aluno da rede estadual (β =-0,87742 ; OR = -58%);
- O aluno ser da rede municipal aumenta em 7% a chance de ir de bicicleta para a escola em relação ao aluno da rede estadual (β =-0,06779 ; OR = -58%);
- O aluno ser da rede particular aumenta em 10 vezes a chance de usar outros meios de transporte em relação ao aluno da rede estadual (β = 2,35639 ; OR = 10x);
- O aluno ser da rede particular aumenta em 12% a chance de ir a pé para a escola em relação ao aluno da rede estadual (β =0,11455 ; OR = 12%);
- O aluno ser da rede particular diminui em 62% a chance de ir de bicicleta para a escola em relação ao aluno da rede estadual (β =-0,96611 ; OR = -62%);

Com relação à variável V18, que representa o indivíduo que acompanha a criança na volta da escola, utilizou-se como referência a mãe da criança e os resultados obtidos no modelo completo apontam que:

- A chance do aluno ir sozinho na volta da escola utilizando outros meios de transporte diminui em 100% em relação aos alunos acompanhados pela mãe (β =-4,49721 ; OR = -100%);
- A chance do aluno ir sozinho a pé na volta da escola diminui em 95% em relação aos alunos acompanhados pela mãe (β =-2,93664 ; OR = -95%);

- A chance do aluno ir sozinho utilizando bicicleta na volta da escola diminui em 93% em relação aos alunos acompanhados pela mãe (β =-2,69768 ; OR = -93%);
- A chance do aluno ir acompanhado do pai na volta da escola utilizando outros meios de transporte aumenta em 52% em relação aos alunos acompanhados pela mãe $(\beta=0,41732 ; OR=52\%);$
- A chance do aluno ir acompanhado do pai a pé na volta da escola diminui em 63%
 em relação aos alunos acompanhados pela mãe (β=-0,99134; OR = -63%);
- A chance do aluno ir acompanhado do pai de bicicleta na volta da escola diminui em 87% em relação aos alunos acompanhados pela mãe (β =-2,00785 ; OR = -87%);
- A chance do aluno ir acompanhado de um adulto da família na volta da escola utilizando outros meios de transporte diminui em 67% em relação aos alunos acompanhados pela mãe (β =-1,10884 ; OR = -67%);
- A chance do aluno ir acompanhado de um adulto da família na volta da escola a pé diminui em 80% em relação aos alunos acompanhados pela mãe (β =-1,61878 ; OR = -80%);
- A chance do aluno ir acompanhado de um adulto da família na volta da escola utilizando a bicicleta diminui em 86% em relação aos alunos acompanhados pela mãe $(\beta=-1,93905; OR=-86\%);$
- A chance do aluno ir acompanhado de um adulto que não é da família na volta da escola utilizando outros meios de transporte diminui em 70% em relação aos alunos acompanhados pela mãe (β=-1,19947; OR = -70%);
- A chance do aluno ir acompanhado de um adulto que não é da família na volta da escola a pé diminui em 96% em relação aos alunos acompanhados pela mãe (β =-3,13519; OR = -96%);
- A chance do aluno ir acompanhado de um adulto que não é da família na volta da escola utilizando a bicicleta diminui em 100% em relação aos alunos acompanhados pela mãe (β =-16,78393 ; OR = -100%);
- A chance do aluno ir acompanhado de um vizinho na volta da escola utilizando outros meios de transporte diminui em 95% em relação aos alunos acompanhados pela mãe (β =-2,97845 ; OR = -95%);
- A chance do aluno ir acompanhado de um vizinho na volta da escola a pé diminui em 85% em relação aos alunos acompanhados pela mãe (β =-1,88058 ; OR = -85%);
- A chance do aluno ir acompanhado de um vizinho na volta da escola utilizando a bicicleta diminui em 92% em relação aos alunos acompanhados pela mãe (β =-2,51332 ; OR = -92%);

A variável V47 que relaciona a se a distância da casa à escola é longa para ir de bicicleta, as respostas do modelo numérico indicam que:

- A chance do aluno que utiliza outros meios de transporte declarar que sua casa é longe demais da escola para ir de bicicleta diminui em 10% em relação aos alunos que declaram que a escola não é longe (β =-0,10084 ; OR = -10%);
- A chance do aluno que vai a pé declarar que sua casa é longe demais da escola para ir de bicicleta diminui em 8% em relação aos alunos que declaram que a escola não é longe (β =-1,77261 ; OR = -8%);
- A chance do aluno que vai de bicicleta declarar que sua casa é longe demais da escola para ir de bicicleta diminui em 63% em relação aos alunos que declaram que a escola não é longe (β =-0,98730 ; OR = -63%).

As respostas da variável V55 que questiona se existem informações sobre linhas e horários do transporte público urbano nas paradas e terminais, apontam que:

- A chance do aluno que utiliza outros meios de transporte declarar que existem informações sobre linhas e horários de ônibus diminui em 57% em relação aos alunos que declaram que não existem informações de linhas e horários (β =-0,85760 ; OR = -57%);
- A chance do aluno que vai a pé declarar que existem informações sobre linhas e horários de ônibus diminui em 57% em relação aos alunos que declaram que não existem informações de linhas e horários (β =-0,84831 ; OR = -57%);
- A chance do aluno que utiliza a bicicleta declarar que existem informações sobre linhas e horários de ônibus diminui em 46% em relação aos alunos que declaram não existem informações de linhas e horários (β =-0,62088 ; OR = -46%).

No que tange ao questionamento se a escola fica longe para que a criança se desloque a pé, controlada no modelo pela variável V91, às respostas indicaram que:

- A chance do aluno que utiliza outros meios de transporte declarar que é muito importante que a escola fica longe para se deslocar a pé diminui em 25% em relação aos alunos que declaram que é importante (β =-0,29140 ; OR = -25%);
- A chance do aluno que vai a pé declarar que é muito importante que a escola fica longe para se deslocar a pé diminui em 10% em relação aos alunos que declaram que é importante (β =-0,10873 ; OR = -10%);
- A chance do aluno que utiliza bicicleta declarar que é muito importante que a escola fica longe para se deslocar a pé diminui em 68% em relação aos alunos que declaram que é importante (β =-1,12967 ; OR = -68%);

- A chance do aluno que utiliza outros meios de transporte declarar que não é importante que a escola fica longe para se deslocar a pé aumenta em 5 vezes em relação aos alunos que declaram que é importante (β =1,56100 ; OR = 5x);
- A chance do aluno que vai a pé para escola declarar que não é importante que a escola fica longe para se deslocar a pé aumenta em 8 vezes em relação aos alunos que declaram que é importante (β=2,12097; OR = 8x);
- A chance do aluno que utiliza a bicicleta declarar que não é importante que a escola fica longe para se deslocar a pé aumenta em 2 vezes em relação aos alunos que declaram que é importante (β =0,75417 ; OR = 2x).
- A chance do aluno que utiliza outros meios de transporte declarar que é pouco importante que a escola fica longe para se deslocar a pé aumenta em 9 vezes em relação aos alunos que declaram que é importante (β =2,16347 ; OR = 9x);
- A chance do aluno que vai a pé declarar que é pouco importante que a escola fica longe para se deslocar a pé aumenta em 12 vezes em relação aos alunos que declaram que é importante (β =2,52486 ; OR = 12x);
- A chance do aluno que utiliza a bicicleta declarar que é pouco importante que a escola fica longe para se deslocar a pé aumenta em 2 vezes em relação aos alunos que declaram que é importante (β =0,86751 ; OR = 2x);

Sobre a preocupação da família em incentivar o filho a ir a pé até a escola, controlada pela variável V100, as respostas obtidas foram as seguintes:

- A chance da família que utiliza outros meios de transporte declarar que é muito importante incentivar que o filho vá a pé para a escola diminui em 58% em relação às famílias que declaram que é importante (β =-0,86328 ; OR = -58%);
- A chance da família que vai a pé declarar que é muito importante incentivar que o filho vá a pé para a escola diminui em 44% em relação às famílias que declaram que é importante (β =-0,58182 ; OR = -44%);
- A chance da família que utiliza a bicicleta declarar que é muito importante incentivar que o filho vá a pé para a escola aumenta em 25% em relação às famílias que declaram que é importante (β =0,22234 ; OR = 25%);
- A chance da família que utiliza outros meios de transporte declarar que não é importante incentivar que o filho vá a pé para a escola diminui em 87% em relação às famílias que declaram que é importante (β =-2,02250 ; OR = -87%);
- A chance da família que vai a pé declarar que não é importante incentivar que o filho vá a pé para a escola diminui em 89% em relação às famílias que declaram que é importante (β =-2,18988 ; OR = -89%);

- A chance da família que utiliza a bicicleta declarar que não é importante incentivar que o filho vá a pé para a escola diminui em 75% em relação às famílias que declaram que é importante (β=-1,40168; OR = -75%);
- A chance da família que utiliza outros meios de transporte declarar que é pouco importante incentivar que o filho vá a pé para a escola diminui em 80% em relação às famílias que declaram que é importante (β=-1,62564 ; OR = -80%);
- A chance da família que vai a pé declarar que é pouco importante incentivar que o filho vá a pé para a escola diminui em 81% em relação às famílias que declaram que é importante (β =-1,69444 ; OR = -81%);
- A chance da família que utiliza a bicicleta declarar que é pouco importante incentivar que o filho vá a pé para a escola diminui em 78% em relação às famílias que declaram que é importante (β=-1,49173 ; OR = -78%);

A variável V110 que monitora a densidade de vias no modelo completo apresentou as respostas a seguir:

- A cada unidade que aumenta a densidade de vias diminui em 16% as chances de se utilizar outros modos de transporte (β =-0,17666 ; OR = -16%);
- A cada unidade que aumenta a densidade de vias diminui em 25% as chances de se ir a pé para a escola (β =-28262 ; OR = -25%);
- A cada unidade que aumenta a densidade de vias diminui em 21% as chances de se ir de bicicleta para a escola (β =-0,24131 ; OR = -21%).

A influência das linhas de transporte público que margeiam o setor apresentou significância e é representada no modelo pela variável V121 onde encontrou-se as seguintes respostas:

- A cada unidade que aumentam as linhas do transporte público que margeiam o setor aumenta em 7% as chances de se utilizar outros modos de transporte (β =0,07135 ; OR = 7%);
- A cada unidade que aumentam as linhas do transporte público que margeiam o setor aumenta em 11% as chances de se ir a pé para a escola (β=0,10169; OR = 11%);
- A cada unidade que aumentam as linhas do transporte público que margeiam o setor aumenta em 21% as chances de se utilizar a bicicleta para ir a escola (β =0,18795 ; OR = 21%).

Resultados do Processamento do Modelo Por Variável Independente

O monitoramento de cada variável independente e relacionada com a forma urbana se faz necessário pois permite mensurar a relevância das variáveis no problema em estudo. No que se refere a área do setor, monitorada pela variável V108, apresentou as seguintes respostas:

- A cada unidade que aumenta na área do setor, aumenta em 16% as chances de se utilizar outros modos de transporte (β =0,1467 ; OR = 16%);
- A cada unidade que aumenta na área do setor, diminui em 22% as chances a criança ir a pé para a escola (β =-0,25404 ; OR = -22%);
- A cada unidade que aumenta na área do setor, diminui em 43% as chances de se utilizar a bicicleta (β =-0,5623 ; OR = -43%);

Ao avaliar o comprimento total das vias que foi monitorada pela variável V109, as respostas indicaram que:

- A cada unidade que aumenta no comprimento total de vias, aumenta em 0,5% as chances de se utilizar outros modos de transporte (β =-0,005821; OR = 0,5%);
- A cada unidade que aumenta no comprimento total de vias, diminui em 1% as chances de ir a pé para a escola (β =-0,012947 ; OR = -1%);
- A cada unidade que aumenta no comprimento total de vias, diminui em 3% as chances de se utilizar a bicicleta (β =-0,027362 ; OR = -3%);

A densidade de vias, outra variável relacionada à forma urbana e monitorada pela variável V110, influenciou no modelo numérico da seguinte forma:

- A cada unidade que aumenta na densidade de vias, diminui em 7% as chances de se utilizar outros modos de transporte (β =-0,0700484 ; OR = -7%);
- A cada unidade que aumenta na densidade de vias, diminui em 20% as chances de ir a pé para a escola (β =-0,2214590 ; OR = -20%);
- A cada unidade que aumenta na densidade vias, diminui em 22% as chances de se utilizar a bicicleta (β =-0,2591593 ; OR = -22%).

O número total de quadras do setor marcou sua influência através da variável V111 que apontou os seguintes resultados:

- A cada unidade que aumenta número total de quadras, diminui em 0,3% as chances de se utilizar outros modos de transporte (β =-0,0034588 ; OR = -0,3%);

- A cada unidade que aumenta número total de quadras, diminui em 0,8% as chances de ir a pé para a escola (β =-0,0081976 ; OR = -0,8%);
- A cada unidade que aumenta número total de quadras, diminui em 1,5% as chances de se utilizar a bicicleta (β =-0,0142914 ; OR = -1,5%).

A densidade de quadras (variável V112) apresentou baixa significância ao modelo e na escolha dos modos. Os resultados obtidos foram os seguintes:

- A cada unidade que aumenta na densidade de quadras, tem 0% as chances de se utilizar outros modos de transporte (β =0,0001261 ; OR = 0%);
- A cada unidade que aumenta na densidade de quadras, aumenta em 0,14% as chances de ir a pé para a escola (β =0,0014512 ; OR = 0,14%);
- A cada unidade que aumenta na densidade de quadras, aumenta em 0,14% as chances de se utilizar a bicicleta (β =-0,0015183 ; OR = 0,14%).

Foram obtidos resultados com relação a conectividade (variável V118). As chances para cada modal são as seguintes:

- A cada unidade que aumenta na conectividade, tem 0,6% as chances de se utilizar outros modos de transporte (β = 0,507862 ; OR = 0,6%);
- A cada unidade que aumenta na conectividade, tem 2% as chances de se ir a pé para a escola (β =-0,020159 ; OR = 2%);
- A cada unidade que aumenta na conectividade, tem 2 vezes as chances de se utilizar a bicicleta (β =-0,835392 ; OR = 2x).

A largura média das calçadas avaliada pela variável V119 no modelo numérico apresentou sua influência através dos seguintes resultados:

- A cada unidade que aumenta na largura média das calçadas, tem 2 vezes as chances de se utilizar outros modos de transporte (β =0,8527288 ; OR = 2x);
- A cada unidade que aumenta na largura média das calçadas, tem 15% as chances de se ir a pé para a escola (β =0,1369460 ; OR = 15%);

A cada unidade que aumenta na largura média das calçadas, reduz em 50% as chances de se utilizar a bicicleta (β =-0,6770930 ; OR = -50%).

Foram monitoradas as linhas de transporte público que atendem o setor (variável V120) e as que margeiam (variável V121). Nas linhas que atendem os resultados encontrados foram os seguintes:

- A cada unidade que aumenta nas linhas de transporte público, diminui em 0,4% as chances de se utilizar outros modos de transporte (β =-0,00412627 ; OR = -0,4%);
- A cada unidade que aumenta nas linhas de transporte público, diminui em 4% as chances de ir a pé para a escola (β =-0,0377068 ; OR = -4%);
- A cada unidade que aumenta nas linhas de transporte público, diminui em 7% as chances de se utilizar a bicicleta (β =-0,0707084 ; OR = -7%).

Nas linhas de transporte público que margeiam o setor, variável V121, têm-se o seguinte:

- A cada unidade que aumenta Nas linhas de TP que margeiam, aumenta em 17% as chances de se utilizar outros modos de transporte (β =0,15740108 ; OR = 17%);
- A cada unidade que aumenta Nas linhas de TP que margeiam, aumenta em 13% as chances de ir a pé para a escola (β =0,1208615 ; OR = 13%);
- A cada unidade que aumenta Nas linhas de TP que margeiam, aumenta em 19% as chances de se utilizar a bicicleta (β =-0,17661089 ; OR = 19%).

6.5 TÓPICOS CONCLUSIVOS

Os resultados do modelo com relação às probabilidades que apontam o modo de transporte escolhido pelo indivíduo, na condução da criança que estuda no ensino fundamental, até a escola, para a cidade de Goiânia, podem ser visualizados na figura 6.34.

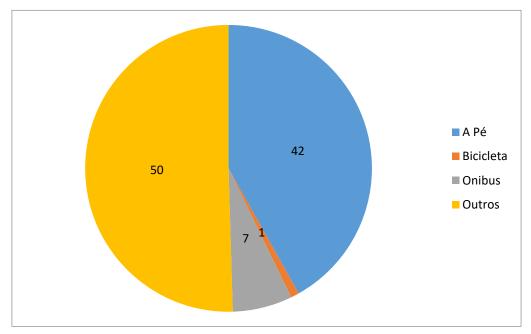


Figura 6.35 – Probabilidade de escolha dos modos - Goiânia

Avaliando a figura 6.34 percebe-se que os resultados do modelo de regressão corroboram com a pesquisa realizada na cidade de Goiânia com certa precisão. Para o modo caminhamento, a probabilidade de escolha foi de 42% diferindo da pesquisa realizada em 10,5%. Para o modo bicicleta, a probabilidade de escolha equivale a 1% enquanto na pesquisa realizada equivale a 3%. Para o modal ônibus, a probabilidade de escolha equivale a 7% enquanto a pesquisa aponta um índice de 9%. Considerando outros modos de transporte que inclui as motos, vans de transporte escolar e os carros, os resultados do modelo numérico com a pesquisa realizada coincidiram em 50%.

Na figura 6.35 podem-se observar as probabilidades de escolha do modo por região administrativa. Observa-se que, no monitoramento por região, o comportamento do modelo de regressão retrata com boa acurácia os resultados da pesquisa. Quando alimentado o modelo numérico com os dados dos questionários, o índice de acerto do modelo foi equivalente a 75%.

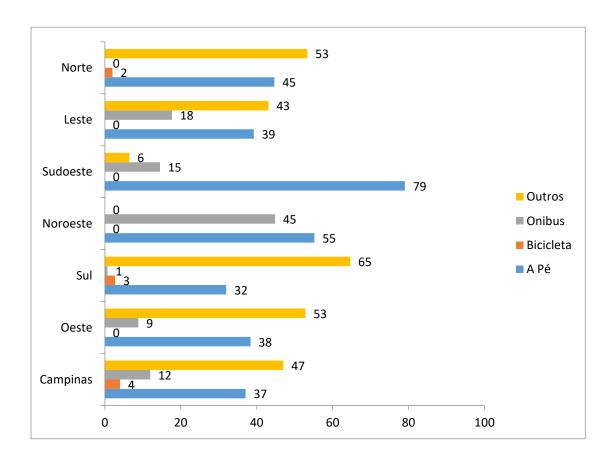


Figura 6.36 – Probabilidade de escolha dos modos - Goiânia

Conclusões e Sugestões

7.0 CONCLUSÕES E SUGESTÕES

7.1 CONCLUSÕES

A presente pesquisa teve como objetivo principal a avaliação da relação entre as variáveis da forma urbana e a escolha do modo de transporte pelos pais na condução de filhos até a escola. Nesta avaliação realizou-se um estudo de caso na cidade de Goiânia com famílias de crianças matriculada no ensino fundamental na rede municipal, estadual e privada.

Elaborou-se um questionário visando explorar as diversas variáveis que serviram para compor o modelo comportamental. Nestas variáveis estão incluídas àquelas relacionadas com as características socioeconômicas, às mediadoras e de moderação além daquelas que exploram a forma urbana. Construiu-se um modelo comportamental de regressão do tipo logit multinomial que possibilitou identificar a função utilidade para o problema em questão e as probabilidades de escolha dos indivíduos.

De uma forma geral, o modelo de regressão elaborado na presente pesquisa se mostrou satisfatório estatisticamente. Considerando o modo caminhamento, os resultados demonstraram um peso maior de variáveis relacionadas à forma urbana especialmente àquelas ligadas a área do setor, o comprimento e densidade de vias, a conectividade, a largura média das calçadas e as linhas de transporte coletivo que atendem e margeiam o setor.

Algumas variáveis relacionadas à forma urbana não tiveram um forte peso dentro da função utilidade como esperado inicialmente. Destacam-se variáveis como o número total de quadras, o comprimento médio das quadras, o número e tipo de intercessões além da densidade das intercessões. Acredita-se que um refinamento melhor do modelo de regressão considerando apenas as variáveis da forma urbana possibilita mensurar a importância ou não no processo de escolha dos modais de transporte. Interessante ressaltar que são variáveis que tiveram pequeno peso, mas que são importantes para a estabilidade do modelo de regressão e no aumento do seu índice de confiança.

Com a construção do modelo estatístico de regressão logística foi possível considerar a influência dos fatores de mediação e moderadores na análise além da interação com as variáveis de forma urbana. Todos esses fatores apresentaram uma baixa

significância o que pode ser justificado pelo questionário aplicado onde se pretendia explorar com maior precisão a influência da forma urbana.

No que tange ao modo caminhamento destacamos a maior opção dos indivíduos que conduzem alunos da rede municipal e estadual em relação à particular. Chama atenção o alto índice de escolha por outros modos de transporte, da rede particular, o que pode explicar os altos índices de congestionamentos nas imediações das escolas privadas na cidade de Goiânia.

O modelo detectou que quando o indivíduo principal que acompanha a criança até a escola é a mãe, a chance de opção pelo caminhamento como modo de transporte principal, é maior em relação à bicicleta, ônibus e outros. Quando o indivíduo é o pai da criança a probabilidade é maior de utilizar outros meios de transporte em comparação com os demais modos. Quando se questiona a influência da distância na escolha do modo, os resultados apontaram uma baixa influência das variáveis o que pode ser justificado pelo fato de que a maioria das famílias residem nas proximidades das escolas o que diminui a distância a percorrer.

Outra conclusão obtida é a influência de um modo sobre outro dentro de um setor. Nos bairros onde existem um número maior de linhas do transporte público urbano que atendem os mesmos ocorre uma redução das chances dos indivíduos em optar pelo modo caminhamento. Quando a quantidade de linhas do transporte público urbano que apenas margeiam o setor, é maior, ocorre uma inversão e as chances dos indivíduos em conduzirem as crianças a pé, aumenta. Chama a atenção de variáveis com forte significância como a largura média das calçadas que estimulam a opção pelo modo a pé em detrimento aos modais bicicleta, ônibus e outros.

A elaboração de modelos de regressão como o utilizado na presente tese pode constituir de uma importante ferramenta para auxílio aos profissionais de urbanismo quando na elaboração de projetos visando estimular a utilização de modais mais sustentáveis. A tabela de probabilidades obtida apresentou um índice de acerto de 75%, o que pode ser considerado satisfatório.

Espera-se que os resultados obtidos nesta pesquisa sirvam como referencial teórico para os urbanistas e autoridades na tomada de decisões que venham a estimular a demanda de viagens não motorizadas e, consequentemente, a redução dos congestionamentos nas imediações das escolas nos grandes centros.

7.2 SUGESTÕES PARA TRABALHOS FUTUROS

De forma a dar continuidade a presente linha de pesquisa são sugeridos alguns temas para serem investigados e que buscam contribuir para a compreensão do modelo comportamental e a escolha dos modos de transportes pelos usuários. Dentre muitas sugestões recomenda-se:

- No presente trabalho optou-se em avaliar a forma urbana na escolha dos indivíduos pelo modo caminhamento, comparando-se com outros modos de transporte. É interessante avaliar a influência da forma urbana na escolha do modo bicicleta e do transporte público urbano. Espera-se que o presente estudo identifique as variáveis que mais influenciam na escolha de modais mais sustentáveis;
- Os resultados da presente tese demonstraram que se faz importante realizar uma pesquisa utilizando modelos de regressão e enfatizando as variáveis socioeconômicas como faixa de renda, número de automóveis, número de crianças no domicilio, sexo e idade das crianças, etc. Ao ressaltar estas variáveis espera-se um aumento da precisão do modelo comportamental;
- Avaliar numa nova pesquisa a contribuição dos fatores mediadores como a segurança do bairro, a segurança do tráfego e as opções de transporte na escolha do modo pelo indivíduo para a condução das crianças até a escola. Os fatores moderadores como atitude dos pais e as características sócio demográficas podem ser incluídas no presente estudo e estabelecidas as devidas comparações de forma a mensurar os pesos dessas variáveis no modelo de regressão;
- É importante averiguar o comportamento de um modelo de regressão mais simples, o binomial, na validação dos resultados encontrados. Os modelos mais simplificados são úteis para estimativas mais rápidas, com precisão satisfatória e que sirvam de subsídios para a elaboração de anteprojetos na área de urbanismo.
- O complexo processo de tomada de decisão sobre o deslocamento até a escola é influenciado por outras variáveis e não investigadas nessa Tese, como tempo e custo de viagem. Para um estudo mais aprofundado do assunto propõem-se a utilização de um modelo baseado em atividades para um melhor entendimento das decisões de viagens.

REFERÊNCIAS BIBLIOGRÁFICAS

- ABBAD, G. S.; TORRES, C. V. Regressão múltipla stepwise e hierárquica em psicologia organizacional: Aplicações, problemas e soluções. Estudos de Psicologia, Natal, v. 7, (número especial), p. 19-29, 2002.
- ALLAN, A. Walking as a Local Transport Modal Choise in Adelaide. World Transport Policy e Practive, volume 7, n °2, p. 44-51, 2001.
- AMÂNCIO, M. A. Relacionamento entre a Forma Urbana e as Viagens a Pé. 2005. 88 p. Dissertação (Mestrado em Engenharia Urbana) Departamento de Engenharia Civil, Universidade Federal de São Carlos, São Carlos, 2005.
- ANTP Associação Nacional de Transportes Públicos. Sistema de Informação da Mobilidade Urbana: Relatório Geral 2012. (interne) Disponível em: http://www.antp.org.br/5dotSystem/userFiles/simob/relat%C3%B3rio%20geral%19 99.pdf [Acessado em janeiro de 2013].
- ANTP Associação Nacional de Transportes Públicos. Transporte humano: cidades com qualidade de vida. Coordenadores: Ailton Brasiliense Pires, Eduardo Alcântara Vasconcelos, Ayrton Camargo e Silva. São Paulo: ANTP, 1997.
- ANTP Associação Nacional dos Transportes Públicos. XII Congresso Brasileiro de Transporte e Trânsito. Disponível em http://www.antp.org.br, acessado em 20.03.2015.
- ARRUDA, F. S. Integração dos Modos não Motorizados nos Modelos de Planejamento dos Transportes, 2000. Dissertação (Mestrado em Engenharia Urbana)-Departamento de Engenharia Civil. Universidade Federal de São Carlos, São Carlos, 2000.
- BANNISTER, D. Sustainable urban development and transport a Eurovision for 2020. Transport Reviews, 20: p. 113-20, 2000.
- BANNISTER, D. The Sustainable Mobility Paradigm. Transport Policy, 15 (2): p. 73-80, 2008.
- BARON, R. M.; KENNY, D.A. The Moderator- Mediator Vriable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, 51 (6): 1173-1182, 1986.

- BARROS, A. P. B. G. Diz-me com quem andas que direi com quem estás: inserção do aspecto relacional na análise da mobilidade urbana para pedestre. Tese de doutorado. UnB, Faculdade de Tecnologia. Departamento de Engenharia Civil e Ambiental. Brasília, 2014.
- BEN-AKIVA, M. E.; LERMAN, S. R. Discrete Choice Analysis: theory and application to travel demand. p. 100-129. Acesso em 2014 http://books.google.com.br/books, 1985.
- BOARNET, M.; ANDERSON; C.; DAY, K.; McMILLAN, T.; ALFONZO, M. 2005. Evaluation of the California Safe Routes to School legislation: urban form changes and children's active transportation to school. American Journal of Preventive Medicine, 28(2S2), 134-140, 2005.
- BOARNET, M.; CRANE, R. The influence of land use on travel behavior: specification and estimation strategies. Transportation Research Part A 35, 823-845, 2001.
- BRADSHAW, R.; ATKINS, S. The use of public transport for school journeys in London. Proceedings of seminar F: Public transport planning and operations, 2–6, 1996.
- CARDOSO, R. A. Trajetória dos Movimentos Sociais. In: DAGNINO, E. (org.). Os anos 90: Polírica e Sociedade no Brasil. São Paulo: Brasiliense, 1994.
- CERVERO, R. Built environments and mode choice: toward a normative framework. Transportation Research, Part D, no. 7, pp. 265-284, 2002.
- CERVERO, R. The transit metropolis: a global inquiry, Island Press, Washington, D.C. Transportation Research no. 24: 125-138, 1998.
- CERVERO, R.; SARMIENTO, O. L.; JACOBY, E.; GOMEZ, L. F.; NEIMAN, A. Influences of Built Environments on Walking and Cycling: Lessons from Bogotá. International Journal of Sustainable Transportation, Volume 3, issue 4, p. 203-226, 2009.
- CERVERO, R; DUNCAN, M. Walking, bicycling, and urban landscapes evidence from San Francisco Bay Area. American Journal of Public Health, v. 93, n. 9, p. 1478-1483, 2003.
- CERVERO, R; KOCKELMAN, K. Travel Demand and the 3Ds: Density, Diversity and Design. Transportation Research, vol. 2, no. 3, pp. 199-219, 1997.

- CHAVEIRO, E. F. Goiânia, uma metrópole em travessia. 2001. Tese (Doutorado em Geografia) Universidade Estadual de São Paulo; São Paulo.
- CUNHA, J.M.P. Migração e Urbanização no Brasil: alguns desafios metodológicos para análise: São Paulo em pespectiva. Journal São Paulo Perspectiva vol.19 no.4 São Paulo Oct./Dec. 2005.
- DELLINGER, A.M.; SATAUTON, C. E. Barriers to children walking and biking to School-United States, 1999, Journal of the American Medical Association, 288 (2002), pp. 1343-1344.
- DEUS, L. R. de. A influência da forma urbana no comportamento de viagem das pessoas: estudo de caso em Uberlândia, MG. Dissertação de Mestrado. UFScar. São Carlos. 2008.
- DiGUISEPPI, C.; ROBERTS, I.; LI, L.; ALLEN, D. Determinants of Car Travel on Daily Journeys to School: Cross Sectional Survey of Primary School Children. British Medical Journal, 316, 1426-1428, 1998.
- DILL, J. Measuring Network Connectivity for Bicycling and Walking. Transportation Research Record, 2004.
- EICHELBERGER, M.R.; GOTSCHALL, C.S; FEELY, H. B.; HARSTAD, P.; BOWMAN, L. Parental Attitudes and Knowledge of Child Safety: a National Survey. American Journal of Diseases of Children, 144: 714-720, 1990.
- EWING, R.; CERVERO, R. (2010) Travel and the built environment. *Journal of the American Planning Association*, vol. 76, n. 3, pp. 265-294.
- FERRARI, C. Curso de Planejamento Municipal Integrado. São Paulo: Livraria Pioneira, 1979.
- FERRAZ, A. C. C. P. Escritos sobre transporte, trânsito e urbanismo. 1. ed. Ribeirão Preto: São Francisco, 1998.
- FERRAZ, A. C. P.; TORRES, I. G. E. Transporte Público Urbano. 2. ed. São Carlos: Rima, 2004.

- FERREIRA; M.A.G., SANCHES; S.P. Índice de qualidade das calçadas IQC. Revista dos transportes públicos- ANTP, 2º trimestre, pp 47-60, 2011.
- FHWA Federal Highway administration, Roundabouts: An informational guide, 2000.
- FRANK, L.D.; PIVO, G. Imapcts of mixed use and denity on utilization of three modes of travel: single-occupant vehicle, transit and walking. Transportation Research Record 1466, 44-52, 1994.
- GEHL, J. Cities for people. Washington D.C.: Island Press, 2010.
- GEHL, J.; SYARRE, B. How to Study Public Life. Washington D.C.: Island Press, 2013.
- GODIM, M.F. (2001). O Transporte Não Motorizado na Legislação Urbana no Brasil. 201f. Dissertação de Mestrado em Transportes. Universidade Federal do Rio de Janeiro COPPE/UFRJ. Rio de Janeiro, 2001.
- GONÇALVES, A. R. Goiânia: uma modernidade possível. Brasília: Ministério da Integração Nacional: Universidade Federal de Goiás, 2003.
- HANDY, S.L. Methodologies for exploring the link between urban form and travel behavior travel in five neighborhoods in the San Francisco Bay Area. Transportation Research D, 1(2): 151-165, 1996c.
- HANDY, S.L. Understanding the link between urban form and nonwork travel behavior. journal of Planning Education and Research, 15: 183-198, 1996a.
- HANDY, S.L. Urban form and pedestrian choices: study of Austin neighborhoods. Transportation Research Record, 1552: 135-144, 1996b.
- HANDY, S.L.; CLIFTON, K.J. Local shopping as a strategy for reducing automobile travel. Transportation, 28: 317-346, 2002.
- HIGHWAY CAPACITY MANUAL. Transportation Research Board. Nacional Research Council, Washington, 2000.
- HILLMAN, M. A. Personal Mobility and Transport Policy PEP Broadsheet 542 London, Policy Studies Institute, 1973.

- HILLMAN, M.; ADAMS, J.; WHITELEGG, J.: One False Move: A Study of Children's Independent Mobility. Policy Studies Institute, London, 1990.
- HOFFERTH, S. L.; BRAYFIELD, A.; DEICH, S.; HOLOCOMB, P. National child care survey, 1990. Washington, DC: Urban Institute Press; 1991.
- HUEBNER, A. J.; MANCINI, J. A. Shaping structured out-of-school time use among youth: The effects of self, family, and friend systems. Journal of Youth and Adolescence, 32, 453–463, 2003.
- IBGE Instituto Brasileiro de Geografia e Estatística, CENSO DEMOGRÁFICO. Goiânia, 2010.
- JACOBS, J. Morte e vida de grandes cidades. São Paulo: Ed. Martins Fontes, 2000.
- KITAMURA, R.; MOKHTARIAN, P.L.; LAIDET, L. A micro-analysis of land use and behavior. Transportation Research D, 1(2): 151-165, 1997.
- KRIZEK, K. J. Operationalizing neighborhood accessibility for land use travel behavior research and regional modeling. Journal of Planning Education and Research 22. pp. 270-287, 2003.
- KRIZEK, K.J.; BIMBAUM, A.S.; LEVINSON, D.M. A Schematic for Focusing on Youth in Investigations of Community Design and Physical Activity. American Journal of Health Promotion, 19, 33-38, 2004.
- LESLIE, A. M.; GERMAN, T. P.; POLIZZI, P. Beliefdesire reasoning as a process of selection. Cognitive Psychology, 50, 45-85, 2005.
- LIU, T., MA, J.; GUAN, W.; SONG, Y.; NIU, H. Bus Arrival Time Prediction Based on the k-Nearest Neighbor Method. In Computational Sciences and Optimization (CSO), 2012 Fifth International Joint Conference on. pp. 480–483, 2012.
- MAHONEY, J. L.; STATTIN, H. Leisure activities and adolescent antisocial behavior: The role of structure and social context. Journal of Adolescence, 23, 113-127, 2000.
- MANSO, C. F. A. A Questão Urbana Derivada das Transformações Econômico-Sociais em Armando Augusto de Godoy: A Cidade Desejada sobre a Cidade que se tem. XVI ENANPUR, v-3 p. 108-120, 2013.

- MARINHO, C. B. Região Sul de Goiânia: Um Lugar Valorizado na Metrópole. Programa de Pesquisa e Pós-Graduação em Geografia/ UFG- Goiânia. GEOUSP- Espaço e Tempo, n° 19, pp. 113-129, São Paulo, 2006.
- MATOS, A. P., PEREIRA, B. O., & ALMEIDA, M. J. (2014). Transporte para a escola na atividade física do adolescente. In B. O. Pereira, A. N. Silva, A. C. Cunha, & J. V. Nascimento (Eds.), Atividade Física, Saúde e Lazer: olhar e pensar o corpo (pp. 182-192). Florianópolis: Tribo da Ilha.
- McDONALD, N. Children's Travel: Patterns and Influences PhD dissertation, Department of City and Regional Planning, University of California, Berkeley, CA, 2005.
- MCDONALD, D.R.; STAMMER, R.E. Contribution to the Development of Guidelines for Toll Plaza Design. Journal of Transportation Engineering, v. 127, n. 3, p. 215-222, 2001.
- McDONALD, N. Active transportation to school: trends among U.S. schoolchildren, 1969–2001. Am. J. Prev. Med. 32(6), 509–516, 2011.
- McDONALD, N. Children's mode choice for the school trip: the role of distance and school locations in walking to school. Transportation, 35, 23-35, 2008.
- MCKIBBIN, M. The Influence of the Built Environmet on Mode Choice. Evidence from the Journey to Work Sydney, Australasian Transport Research Forum 2011. Adelaide, Australia, 28-30 setember, 2011.
- McMILLAN, T. E. Walking and urban form: Modeling and testing parental decisions about children's travel. Unpublished doctoral dissertation. University of California, Irvine, 2003.
- MEDEIROS, V. A. S. UrbisBrasiliae ou sobre cidades do Brasil: Inserindo Assentamentos Urbanos do País em Investigações Configuracionais Comparativas. Tese (Doutorado em Arquitetura e Urbanismo) – Programa de Pesquisa e Pósgraduação da Faculdade de Arquitetura e Urbanismo, Universidade de Brasília, Brasília, 2006.
- MORAES, S. de. O empreendedor imobiliário e o Estado a expansão sul de Goiânia-1975 a 1985. Dissertação de Mestrado. Faculdade de Arquitetura da Universidade de Brasília, 1991.

- MOUDON, A. V.; Lee, C.; CHEADLE, A. D.; GARVIN, C.; JOHNSON, D., SCHMID, T. L., WETHERS, R. D., e LIN, L. Operational definitions of walkable neighborhood: theoretical and empirical insights. Journal of Physical Activity and Health, vol. 3, n. 1, pp. 99-117, 2006.
- MOYSÉS, Aristides. Goiânia: Metrópole não planejada. Goiânia: Editora da UCG, 2004.
- NOVAES, A. G. Sistemas de Transportes: Análise da Demanda. Edgard Blücher Ltda. Vol. 1. São Paulo SP, 151 p, 1986.
- OGILVIE, D.; BULL, F.; COOPER, A.; RUTTER, H.; ADAMS, E.; BRAND. C. Evaluating the travel, physical activity and carbon impacts of a "natural experiment" in the provision of new walking and cycling infrastructure: methods for the core module of the iConnect study. BMJ. 2012.
- OLIVA, S. De la Fuente i La Influencia de la Forma Urbana en la Movilidad: un studio para el caso de Cataluña. Documents de Recercadel Programa de Doctorado em Economía Aplicada Universitat Autònoma de Barcelona, 2007.
- ORTÚZAR, J. D.; WILLUMSEN, L. G. Modelling Transport. Inglaterra: John Wiley e Sons Ltda., 375 p., 1994.
- PASANEN, E. The Video Recording of Traffic Accidents. Report n° 1993:4, Helsinki Finland City Planning Departament, 11pp, March,1993.
- PIKE J. (2003). Lipid rafts: bringing order to chaos, Journal of Lipid Research, 44: 655 667.
- PITOMBO, C. S.; KAWAMOTO, E. Análise de Relações entre Variáveis Socioeconômicas, Geográficas e do Sistema de Transportes e Padrões de Encadeamento de Viagens Urbanas. Panorama Nacional de Pesquisa em Transportes, XVIIIAnpet, v.3 p. 91-94, 2004.
- PLANO DIRETOR DE GOIÂNIA. Lei Complementar nº 171/2007. Goiânia, 2007.
- PONT,K.,; ZIVIANI, J.; WADLEY, D.; BENNETT, S.; ABBOTT, R. Environmental Correlates of Children's Active Transportation: as Systematic Literaturer Review. Health Place 15(3),849–862, 2009.
- RAIA Jr., A. A. Acessibilidade e Mobilidade na Estimativa de um Índice de Potencial de Viagens utilizando Redes Neurais Artificiais e Sistemas de Informação. Tese,

- Doutorado em Engenharia Civil Transportes pela Universidade de São Paulo, Escola de Engenharia de São Carlos. São Carlos, 2000.
- RIBEIRO, M. E. J. Goiânia: os planos, a cidade e o sistema de áreas verdes. Goiânia: Editora da UCG, 2004.
- RODRÍGUEZ, D. A.; Joo, J. The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9(2), 151-173, 2004.
- ROSENBLOOM, S. The Impacto f Growing Children on their Parent's Travel Behavior: a Comparative Analysis. Transportation Research Record, 1135:17-25, 1987.
- Urbano Secretaria Municipal de Desenvolvimento Sustentável (SEMDUS)-Departamento de Pesquisa, Estatística e Estudos Socioeconômicos da Diretoria de Informações Urbanas Geoprocessamento (2013).Disponível http://www.goiania.go.gov.br/shtml/seplam/anuario2013/arguivos%20anuario/3%20 DEMOGRAFIA/3.1%20Popula%C3%A7%C3%A3o/3.1.1%20Evolu%C3%A7%C3% A3o%20da%20popula%C3%A7%C3%A3o%20-%20Goi%C3%A2nia%20-%202000-2013.pdf. Acesso 01 novembro de 2016.
- SHANN, M. H. Professional Commitment and Satisfaction among Teachers in Urban Middle schools. The Journal of Educational Research, 92 No. 2, 67-73, 2001.
- SILVA, K. S.; LOPES, A. S. Excesso de Peso, Pressão Arterial e Atividade Física no Descolamento à Escola. Arquivos Brasileiros de Cardiologia, v.91, p. 93-101, 2008.
- SILVA, K. S; LOPES, A. S; SILVA, E. M. Atividade Física no Deslocamento à escola e no Tempo Livre em Crianças e Adolescentes da Cidade João Pessoa, Paraíba, Brasil. Revista Brasileira Cidades e Movimento, 15 (3): 61-70, 2007.
- SILVA, S. G.; DUCA, G.F.D.; SILVA, K. S.; OLIVEIRA, E. S. A; NAHAS, M. V. Deslocamento para o trabalho e fatores associados em industriários do sul do Brasil. Revista de Saúde Pública, São Paulo, v. 46, n. 1, p. 180-184, 2012.
- SILVA. R. U. DA; LIMA, N. N DE; QUEIROZ, D. DA R.; POMPÍLIO, R. G. DE S.; FREITAS, C. M. S. M. Características Sociodemográficas e Deslocamento Ativo em Adolescentes Escolares. Revista Saúde e Pesquisa, v. 7, n. 3, p. 383-388, set./dez. 2014.
- SIMOB/ANTP (2011) Sistema de Informações de Mobilidade Urbana/ Associação Nacional de Transportes Públicos (2011). Disponível em:

- http://www.antp.org.br/website/produtos/sistemas-de-informacoes-da-mobilidade/show.asp?ppgCode=-D90B394F-706E-40A8-A286-EBEA56C05A0B>. Acesso em: 13 nov. 2016.
- SOUZA, C. O.; SILVA, R. C. R.; ASSIS, A. M. O.; FIACCONE, R. L.; PINTO, E. J.; MORAES, L. T. L. P. Associação entre Inatividade Física e Excesso de Peso em Adolescentes de Salvador, Bahia-Brasil. Revista Brasileira de Epidemiologia, v. 13, p. 468-475, 2010.
- STAUNTON, C. E.; HUSBMITH, D.; KALLINS, W. Promoting Safe Walking and Biking to School: The Marin County Success Story. American Journal of Public Health, Callifornia, Vol 93, No. 9, September 2003.
- TAKANO, M. S. M. Análise da influência da forma urbana no comportamento de viagens encadeadas com base em padrões de atividades. Dissertação (Mestrado em Transportes) Departamento de Engenharia Civil e Ambiental, Faculdade de Tecnologia da Universidade de Brasília, Brasília, 2010.
- TUDOR-LOCKE, C.E.; MYERS, A.M. Methodological considerations for researchers and practitioners using pedometers to measure physical (ambulatory) activity. Research Quarterly for Exercise and Sport72, 1-12, 2001.
- VASCONCELLOS, C. S. Planejamento Projeto de Ensino-Aprendizagem e Projeto Político-Pedagógico Ladermos Libertad-1. 7º Ed. São Paulo, 2000.
- VASCONCELLOS, E. A. O transporte urbano no Brasil. ANTP- Associação Nacional dos Transportes Públicos, "Sistema de Informação da Mobilidade", 2011. Disponível em: <www.antp.org.br>.
- VASCONCELLOS, E. A. Transporte urbano, espaço e equidade: análise das políticas públicas. São Paulo: Annablume, 2001.
- VASCONCELLOS, E. A. Políticas de Transporte no Brasil. São Paulo. Ed. Manole, 2014
- VAZ, M. D. A. C. Transformação do centro de Goiânia: renovação ou reestruturação? Dissertação (Mestrado em Geografia) Instituto de Estudos Sócio-Ambientais da Universidade Federal de Goiás, Goiânia, 2002.
- VILLOTA, J. Urbanismo, planificación y diseño. La cidad y sus disciplinas. Entorno urbano 1999 2001. Dissertação (Maestría en Diseño Urbano), Universidad Metropolitana, Caracas, 2001.

VLIET, W. V. Children's travel behavior. Ekistics 298, 61–65, 1983.

WHO – World Health Statistics. Cause-specific mortality rate (per 100 000 population). Disponível em: www.who.int, 2010.

YARLAGADDA, A. K.; SRINIVASAN, S. Modeling Children's School Travel Mode and Parental Escort Decisions. Transportation, Vol. 35, No. 2, pp. 201-218, 2008.

Anexo

A

A.1 Dados Estatísticos

Região	Rede			
	Estadual	Municipal	Particular	Total
Campinas				
centro	7161	13402	15245	35808
Leste	3925	7990	5508	17423
Noroeste	4753	4371	5239	14363
Norte	1331	10384	5321	17036
Oeste	2615	11336	5120	19071
Sudoeste	2046	13710	9733	25489
Sul	4132	6609	19165	29906
Total	25963	67802	65331	159096

		Particular	6995	1822	855	491	317	222	163	125	66	81	6570	2211	1050	605	392	274	202	155	123	100	8302	3074	1500	874	695	399	295	227	180	146
	Sul	Municipal	1955	628	295	170	110	- 22	25	44	38	28	2266	763	362	500	136	56	02	54	43	38	2863	1061	518	302	197	138	102	87	62	51
		Estadual	1223	393	185	106	69	48	36	27	22	18	1417	477	227	131	85	09	44	34	27	22	1790	663	324	189	123	98	64	49	68	32
		Particular	3213	1068	905	291	189	132	26	75	65	48	3692	1292	620	359	233	163	121	93	73	09	4602	1783	882	517	337	237	175	135	107	87
	Sudoeste	Municipal	4526	1504	712	410	266	186	137	105	83	89	5205	1820	873	905	328	230	170	130	103	84	6482	2511	1243	728	475	334	247	190	151	122
		Estadual	9/9	225	107	62	40	28	21	16	13	11	777	272	131	92	49	35	26	20	16	13	896	375	186	109	71	20	37	29	23	19
REDE		Particular	2034	724	350	203	132	92	68	53	42	34	2304	870	427	249	163	114	85	99	52	42	2791	1181	602	357	235	165	123	95	75	61
NISTRATIVA/	Oeste	Municipal	4502	1603	773	449	291	204	151	116	92	75	5101	1925	945	552	360	252	187	144	114	95	6180	2614	1332	790	519	366	271	509	166	135
EGIÃO ADMI		Estadual	1039	370	179	104	89	47	35	27	22	18	1177	444	218	128	83	65	43	33	27	22	1426	603	308	183	120	85	63	49	39	31
GOIÂNIA/R		Particular E	2259	829	403	235	153	107	62	61	48	39	2544	992	492	288	188	132	86	92	09	49	3049	1337	691	412	271	192	142	110	87	71
AMENTAL DE	Norte	Municipal Pa	4407	1617	787	458	298	209	154	119	94	92	4964	1935	656	563	367	258	191	147	117	96	2950	2608	1347	804	529	374	77.2	214	170	138
USINO FUND		Estadual M	595	208	101	65	39	27	20	16	13	10	637	248	123	73	48	34	25	19	15	13	763	335	173	103	89	48	36	28	22	18
LUNOS DO E		Particular Es	2445	940	464	272	178	125	92	71	95	46	2728	1119	295	333	219	154	114	88	70	25	3218	1491	788	474	314	222	165	128	101	83
TRA RETIRADA DA POPULAÇÃO DE ALUNOS DO ENSINO FUNDAMENTAL DE GOIÂNIA/REGIÃO ADMINISTRATIVA/REDE	Noroeste	Municipal Pa	2040	785	388	227	148	104	- 22	65	47	38	2276	934	471	278	182	128	95	73	58	47	2685	1244	657	396	262	186	138	107	85	69
DA DA POPU	Nor	Estadual Mui	2218 2	853	421	247	161	113	84	92	51	42	2475 2	1015	512	303	198	140	104	80	63	52	2919 2	1353 1	715	430	285	202	150	116	92	75
STRA RETIRA		ılar																					2									
ANEXO A-1 CÁLCULO DA AMOS		al Particu	2308	842	409	238	155	109	80	62	49	40	2602	1008	499	292	191	134	66	9/	61	49	312(136	701	418	275	194	144	111	88	72
O A-1 CÁLCL	Leste	Municipal	3348	1221	593	345	224	157	116	89	71	28	3775	1462	723	424	777	194	144	111	88	71	4534	1974	1017	909	399	281	209	161	128	104
ANEX		Estadual	1645	009	292	170	111	78	22	44	35	29	1854	718	356	208	136	96	7.1	55	43	32	2228	026	200	298	196	138	103	6/	E9	51
	ro	Particular	3959	1230	572	328	211	148	109	84	99	54	4626	1498	704	405	262	183	135	104	82	67	5939	2098	1010	585	380	266	197	151	120	97
	Campinas/centro	Municipal	3481	1081	503	288	186	130	96	74	58	47	4067	1317	619	356	230	161	119	91	72	65	5221	1845	888	515	334	234	173	133	105	85
	Cs	Estadual	1860	578	269	154	100	70	5.1	40	31	26	2173	704	331	190	123	98	64	49	39	32	2790	986	475	275	179	125	93	7.1	95	46
		ERRO MÁXIMO	1%	2%	3%	4%	965	969	7%	988	966	10%	196	2%	3%	496	965	969	962	8%8	966	10%	1%	2%	3%	4%	965	969	7%	988	966	10%
		CONFIANÇA ERR	9606	9606	9606	9606	%06	9606	%06	9606	9606	%06	95%	95%	95%	95%	95%	9856	95%	95%	95%	95%	%66	%66	%66	%66	%66	9666	%66	%66	%66	%66

A.3 Formulário de Pesquisa

Universidade de Brasília Faculdade de Arquitetura e Urbanismo

Você sabia que a forma urbana das cidades pode influenciar no comportamento dos país na escalha do tipo de transporte utilizado para condusir suas crianças até a escala. Pensando nisso, a Universidade de Brasilia - Unil, através do Programa de Pós-Gradução em Arquitetura e Urbanismo, está estudando a influência da forma urbana nas escolhas do modo de transporte das familias em suas viagens escolares. Quando se trata de forma urbana estamos falando de calçadas, tráfego, sinalização viária, etc. Para alcançarmos nosso objetivo, precisamos preencher o formulário abaixo, com perguntas diretas feitas aos pais das crianças que cursam o ensino fundamental da sua escala. Todo o preenchimento dura em tomo de 16 minutos, e as informações fornecidas serão confidenciais. Ninguém tomară conhecimento das respostas, nem tampouco os dados serão gravados em qualquer lugar, esse é apenas um estudo científico do Universidade.

Obrigada.

Qual seu grau de parentesco com a criança pesquisada?
a.() pai e. () madrasta
b.() mile f.() tio(a)
c.() irmilo (a) g.() avô (a)
d.() padrasto h. () outro:
2. Qual a série que seu filho estuda?
3. Qual é o seu endereço?
4. Com que você trabalha?
5. Qual seu estado civil?
() casado () solteiro
() divorciado () viúvo
() em uma união estável
6. Qual a faixa de renda mensal da familia da criança
pesquisada?
()1 satirio minimo
() de 2 a 3 salários mínimos
() de 4 a 5 salários mínimos
() de Ga 7 salários mínimos
() mais de 8 salários mínimos
7. Qual o número de automóveis no domicilio?
() 1 automóvel
() 2 automóveis
() 3 automóveis
() 4 automóveis
() 5 ou mais automóveis
II. Induindo você meumo, quantas pessoas moram na

residência da criança pesquisada?

9. Qual seu grau de instrução: () primeiro grau incompleto () segundo grau incompleto () segundo grau incompleto () segundo grau completo () superior incompleto () superior completo () pos-graduado 10. Incluindo você mesmo, quantas pessoas tem habilitação na sua residência?							
habilitação na sua residên-	da?						
11 20 1							
Qual o sexo da criança pesquisada? () Masculino () Feminino							
12. Qual a idade da criança	i (filho)						
Como o seu filho se desloca até a escola, normalmente? a.() no carro da familia							
b.()apé							
c.() bicidets							
e.() Transporte público	d.() Snibus escolar						
g.() Outros. Qual?							
14. Quem acompanha	seu filho até a escola						
normalmente?							
ida	volta						
a.()mle	a.() mile						
b.() pai	b.() pai						
c.() um outro adulto da familia	c. () um outro adulto						
d.() um outro adulto	da familia d.() um outro adulto						
que não é da familia	que não é da familia						
e.() visinhos	e.() vizinhos						
f.() Ninguém, pois	f. () Ninguém, pois meu						
meu filho vai à escola	meu filho vai à escola						
sorinho	sazinha						
	para seu filho chegar até a						
escola?							
a. () menos de 5 min. b. () entre 5 e 10 min.							
c. () entre 11 e 20 min.							
d. () entre 21 e 30 min.							
e. () entre 30 min e 40 m	in						
f. () entre 40 min e 50 m	iln						
g. () entre 50 min e 1 hor	3						
h. () mais de 1 hora							
1000							
16.Para onde vocé costum escola?	na ir após delxar seu filho na						
escola? a.() so trabalho							
b.() volta para casa							
c.()Levar outras crianças à outras escolas							
d.() academia							
	outras atividades ligadas a						
familia							
	rmente meu filho costuma ir						
sorinho à escola							

	e. andar por locais onde as quadras silo compridas
17. Qual o endereço do local respondido na questão 167	demais?
Pode ser apenas o bairro	() nim () nilo
	e, russ que possuam forte inclinação?
	() sim () não
	f, ander em lugares onde as calcadas estão estragadas?
	() sim () não
16. Qual a distância da escola da criança até o local	
respondido na questão 16?	g, andar em locais onde o fluxo de veículos é pesado?
	() sim () nilo
	h. Andar em lugares onde não exista guarda de
	tránsito?
	() sim () nilo
19. Qual fator você considerou o mais importante na	i. Andar em lugares com alto indice de assaltos?
escolha da escola do seu filho (a)	() sim () não
), sua casa é longe demais da escola par ir a pé?
a.f.) Servico de ônibus escolar disponível	() sim () não
b.() Proximidade da escola com a residência	, ,,, ,
c.() Qualidade da escola e dos professores	Bickleta
d.() Proximidade da escola com meu trabalho	a atravessar ruas com mais de 4 faixas de tráfeso?
e.() Disponibilidade de linhas do transporte público	() sim () não b. atravessar ruas sem faixa de pedestres pintada?
próximo à escola	
g.() Outros. Qual?	() sim () não
	c. andar por locais sem illuminação pública adequada?
20. Na última semana, com que frequência seu filho	() sim () não
andou (a pá) até a escola?	d. ander por locals com lotes varios?
	() sim () não
a. () Nenhum dia	e, russ com ramoss?
b. () Cerca de um dia na semana	() sim () não
c. () Cerca de um dia na semana c. () Cerca de dois dias na semana	f, andar em locals bastante movimentado com fluxo de
d. () Cerca de três das na semana	valentes?
	() sim () não
e. () Todos os dias	
21. Na última semana, com que frequência seu filho	g, andar em locais onde não exista ciclovias ou
pedalou (bicicleta) até a escola?	ciclofaixat?
	()sim ()não
a. () Nenhum dia	h. Existe estacionamento de bicicleta na escola?
b. () Cerca de um da na semana	() sim () não
c. () Cerca de dois dias na semana	i. É comum assaltos à ciclistas na regilio?
d. () Cerca de três dias na semana	() sim () não
e. () Todos os dias	j, sua casa é longe demais da escola par ir de bicideta?
e-1 / 1000s os unas	() sim () não
22. Na última semana, com que frequência seu filho foi	
de ônibus até a escola?	Onibus
de onique até a escota?	a, pegar ônibus lotado?
	()sim () rile
a. () Nenhum dia	b. andar demais até a parada de ônibus mais perto de
b. () Cerca de um dia na semana	b. andar demais are a parada de onicus mais perto de casa?
c. () Cerca de dois dias na semana	
d. () Cerca de três dias na semana	() sim () não
e. () Todos os dias	c. andar demais até a parada de ônibus mais perto da
	escola?
23. Se o seu filho for a pé, de bicicleta, ou ônibus do	() sim () não
transporte público até a escola quais as dificuldades ini	d. esperar demais nas paradas pelos ônibus?
encontrar no caminho? É preciso responder a cada uma	() sim () não
das persuntas, mesmo que seu filho não se desloque	e, é seguro andar de ônibus até a escola?
	() sim () não
até a escola por nenhum desses meios.	f. é confortável ir de ônibus até a escola?
	() sim () não
Apé	s, as paradas de ônibus são pequenas?
a atravessar ruas com mais de 4 faixas de tráfego?	g. at paradat de oniout tao pequenat/
() sim () nilo	
b. atravessar ruas sem faixa de pedestres pintada?	h. existem informações sobre as linhas e horários de
() sim () nilo	chegada e partida dos ônibus nas paradas e terminais?
c, andar por locals sem illuminacijo pública adequada?	() sim () não
()sim ()nilo	i, você considera que existem muitos terminais no
I I I I I I I I I I I I I I I I I I I	
d. ander per locals com lotes varios?	caminho entre sua casa e a escola?

24. Em que situação abaixo você detxaria seu filho (a) ir a pé até a escola? Escolha uma opção entre: Nunca detxaria meu filho ir a pé para a escola. Você deve marcar uma das opções em todas as linhas, mesmo que seu filho não vá a pé para a escola.

	Nunca	Acho que não	Tahez	Acho que sim	Com
Se ele (a) fosse mais velho (a)					
Se o clima fosse melhor					
Se o baimo fosse mais seguro					
A escola fosse mais perto de casa					
Se houvesse russ menos movimentadas no caminho					
Se houvesse guardas de trânsito controlando o fluso no caminho até a escola					
Se as calçadas fossem conservadas e confortáveis para caminhada					
Se existissem faixas de pedestre ao longo do caminho até a eszola					
Se as ruas tivessem bos sinsilização ao longo do caminho até a escola					

25. Em que situação abaixo você deixaria seu filho(a) ir de bicideta até a escola? Escolha uma opção entre: Nunca deixaria meu filho ir de bicideta para a escola. Você deve marcar uma das opções em todas as linhas, mesmo que seu filho não utilize a bicideta para se deslocar até a escola.

	Nunca	Acho que não	Talvez	Acho que sim	Com
Se ele (a) fosse mais velho (a)					
Se o clima fosse melhor					
Se o baimo fosse mais seguro					
Se houvesse ciclovia durante o caminho até a escola					
Se houvesse bos sinalização para ciclista durante o caminho até a escola					
A escola fosse mais perto de casa					
Se houvesse russ menos movimentadas no caminho			·		

26. Em que situação abaixo você deixaria seu filho (a) ir de ônibus até a escola? Escolha uma opção entre: Nunca deixaria meu filho ir de ônibus para a escola. Você deve marcar uma das opções em todas as linhas, mesmo que seu filho não utilize o ônibus para se deslocar até a escola.

	Nunca	Acho que não	Talvez	를 중 등	Com certeca
Se ele (a) fosse mais velho (a)					
Se as paradas de ônibus fossem maiores e seguras					
Se existissem paradas de ônibus perto da minha casa					
Se existissem paradas de ônibus perto da escola					
Se houvesse mais linhas de ônibus					
Se andar de ônibus fosse mais rápido					
Se os ônibus fossem pontuais					
Se os ônibus não fossem lotados					
Se as ânibus estivessem navas e fassem limpos					
Se andar de ônibus fosse mais confortável					
Se andar de ônibus fosse mais seguro					
Se os ônibus passassem nos horários marcados nas planilhas					

27. Observe os fatores abaixo e assinale qual a importância de cada um deles no deslocamento do seu filho até a escola

Não é importante	Pouco importante	Importante	Multo importante
	Importante	importants importants	Importante Importante

A.4 Escolas e Bairros Pesquisados

ANEXO A-4 NOME E ENDEREÇO DAS ESCOLAS PESQUISADAS											
Região	Esta	dual	Mun	icipal	Parti	cular					
	Escola	Endereço	Escola	Endereço	Escola	Endereço					
Campinas Centro	COLEGIO APLICACA O DO INSTITUTO DE EDUCACAO DE GOIAS COLEGIO ESTADUAL ASSIS CHATEAUB	RUA 159, 176 - VILA NOVA Av. Otavio Tavares de Morais S/N	ESCOLA MUNICIPAL SANTA HELENA	Av. Curitiba VILA PARAISO	COLEGIO ANHANGUE RA	Rua professor Lázaro Costa CIDA DE JA RDIM					
Leste	RIAND COLEGIO ESTADUAL MAJOR OSCAR ALVELOS	RUA 2011 - PARQUE ATHENEU	ESCOLA MUNICIPAL ANA DAS NEVES	Rua C6 Quad. 08 Lt 06 PARQUE DAS LARANJEIR AS	COLEGIO ADVENTIST A NOVO MUNDO	Rua Indiana JARDIM NOVO MUNDO					
Noroeste	COLEGIO ESTA DUA L NOSSA SENHORA DE LOURDES	Rua JC 26 - JD CURITIBA II	CENTRO PROMOCIO NAL TODOS OS SANTOS II	Rua Gaspar Silveira Martins CAPUAVA	COLEGIO PROJETO DIDATICO	Rua I PARQUE TREMENDÃ O					
Norte	COLEGIO ESTADUAL WALDEMA R MUNDIM	Rua R 40 Qd 40 Lt 28 - CONJ ITATIAIA I	ESC MUL STEPHANIA ALVES BISPO ESCOLA MUNICIPAL MARIA DA TERRA	Rua Transversal Qd. 74 JARDIM LIBERDADE Rua BF 1 A BAIRRO FLORESTA	COLEGIO INTEGRADO DE EDUCACAO MODERNA	Rua J 6 - SETOR JAO					
Oeste	COLEGIO ESTA DUAL LUIS PERILLO COLEGIO ESTA DUAL SENA DOR TEOTONIO VILELA	Rua Humberto Dias - BA IRRO GOIA Av. Senador Canedo SN CJ. VERA CRUZ I	ESC MUL CASTORIN A BITTENCOU RT ALVES	Rua CP 8 - CAROLINA PARQUE	EDUCANDA RIO PEQUENOS GENIOS	Rua VC 70 Qd.140 Lt17/18 - CONJUNTO VERA CRUZ					
Sudoeste	ESCOLA ESTADUAL PROFESSO R SEBASTIAO FRANCA	Rua Presidente Cleveland, QD38, LT.8 - JD PRESIDENT E	ESCOLA MUNICIPAL ENGENHEIR O ANTONIO FELIX DA SILVA ESCOLA MUNICIPAL DEP. JAMEL CECÍLIO	Rua Dinamarca S/N qd. 99 JARDIM EUROPA AV. Pedro Ludovico Teixeira JARDIM VILA BOA	ESCOLA JESUS MARIA JOSÉ	Rua F 29 SETOR FAIÇALVILL E					
Sul	COLEGIO ESTA DUA L VISCONDE DE MA UA	Rua 1016 com rua 1007 - SETOR PEDRO LUDOVICO	ESCOLA MUNICIPAL IZABEL ESPIRIDIAO JORGE	Rua São Luis, 499 quadra 10 ALTO DA GLÓRIA	Escola Interamérica	Rua C 242 JARDIM AMÉRICA					

Anexo B

B.1 Tabela de Probabilidades

		1	1	1
Indivíduo	Outros	A pé	Bicicleta	ônibus
1	0.068432	0.832185	0.030649	0.068734
2	0.41138	0.309691	0.018743	0.260185
3	0.12504	0.180349	0.012317	0.682294
4	0.207412	0.296391	0.016125	0.480072
5	0.341141	0.651442	0.006734	0.000683
6	0.835182	0.081954	0.003564	0.0793
7	0.07551	0.781731	0.016806	0.125952
8	0.207412	0.296391	0.016125	0.480072
9	0.247592	0.357841	0.022659	0.371907
10	0.273125	0.435643	0.01536	0.275871
11	0.640227	0.331229	0.005232	0.023312
12	0.138692	0.21877	0.073832	0.568707
13	0.08166	0.633926	0.022978	0.261436
14	0.075678	0.847094	0.018667	0.058561
15	0.090045	0.100065	0.018507	0.791383
16	0.386827	0.522574	0.022452	0.068147
17	0.075623	0.709399	0.027389	0.187589
18	0.065112	0.385054	0.032473	0.517361
19	0.306382	0.648379	0.028305	0.016934
20	0.377133	0.60231	0.011766	0.008791
21	0.105969	0.188541	0.020041	0.685449
22	0.077318	0.123098	0.052153	0.747431
23	0.885838	0.038368	1.94E+05	0.075794
24	0.042418	0.431419	0.030025	0.496138
25	0.037975	0.226672	0.023998	0.711356
26	0.331362	0.584165	0.070788	0.013685
27	0.075623	0.709399	0.027389	0.187589
28	0.176811	0.311675	0.02639	0.485125
29	0.668058	0.265667	0.025435	0.040841
30	0.075623	0.709399	0.027389	0.187589
31	0.042378	0.272593	0.014873	0.670156
32	0.058652	0.861891	0.033811	0.045645
33	0.079284	0.879257	0.015434	0.026024
34	0.243922	0.290368	0.043849	0.421861
35	0.226237	0.44493	0.021372	0.307462
36	0.086348	0.227121	0.030607	0.655924
37	0.513887	0.026153	3.23E+05	0.45996
38	0.878257	0.044018	6.85E+05	0.077725
39	0.103233	0.226198	0.084613	0.585957
40	0.246476	0.717856	0.027669	0.007999
41	0.086348	0.227121	0.030607	0.655924
42	0.086348	0.227121	0.030607	0.655924
43	0.783552	0.052038	1.81E+06	0.16441

		T		1
44	0.893782	0.060023	2.18E+05	0.046195
45	0.629042	0.286793	0.067293	0.016872
46	0.187814	0.31057	0.051984	0.449632
47	0.584384	0.024775	8.49E+05	0.39084
48	0.038591	0.380552	0.012815	0.568043
49	0.038591	0.380552	0.012815	0.568043
50	0.038591	0.380552	0.012815	0.568043
51	0.038591	0.380552	0.012815	0.568043
52	0.859579	0.073418	0.00221	0.064792
53	0.103233	0.226198	0.084613	0.585957
54	0.848462	0.051048	2.86E+04	0.10049
55	0.602788	0.277389	0.081707	0.038115
56	0.65484	0.180965	0.038697	0.125498
57	0.086348	0.227121	0.030607	0.655924
58	0.735006	0.058597	7.35E+05	0.206397
59	0.59123	0.337649	0.054349	0.016773
60	0.77484	0.20533	0.005496	0.014335
61	0.023927	0.949521	0.022924	0.003628
62	0.570479	0.388756	0.035716	0.005049
63	0.564649	0.367556	0.019737	0.048058
64	0.258747	0.531763	0.016378	0.193112
65	0.897839	0.082297	0.001791	0.018073
66	0.085723	0.555114	0.043288	0.315875
67	0.693364	0.167698	0.010514	0.128423
68	0.294823	0.695427	0.008672	0.001078
69	0.324929	0.648314	0.017781	0.008976
70	0.793077	0.046097	4.70E+05	0.160826
71	0.885429	0.03884	1.77E+05	0.075731
72	0.304608	0.652853	0.02571	0.016829
73	0.412937	0.519408	0.031116	0.036538
74	0.085723	0.555114	0.043288	0.315875
75	0.105924	0.190868	0.018302	0.684906
76	0.412937	0.519408	0.031116	0.036538
77	0.388552	0.493298	0.037099	0.081052
78	0.059333	0.568946	0.024876	0.346845
79	0.349248	0.482291	0.023466	0.144995
80	0.067892	0.836161	0.02778	0.068167
81	0.053987	0.810971	0.036028	0.099014
82	0.897839	0.082297	0.001791	0.018073
83	0.885429	0.03884	1.77E+05	0.075731
84	0.33092	0.590832	0.064587	0.013661
85	0.667271	0.268741	0.02321	0.040777
86	0.140082	0.335404	0.143157	0.381357
87	0.037531	0.923905	0.025524	0.01304
0.0		1		
88	0.037531	0.923905	0.025524	0.01304

		I		I
90	0.03912	0.603941	0.053158	0.303781
91	0.056427	0.849983	0.075212	0.018377
92	0.040114	0.894768	0.044393	0.020726
93	0.048399	0.740278	0.051904	0.15942
94	0.15699	0.819206	0.022372	0.001432
95	0.056427	0.849983	0.075212	0.018377
96	0.091693	0.869585	0.032182	0.00654
97	0.043435	0.939097	0.015842	0.001626
98	0.040114	0.894768	0.044393	0.020726
99	0.472659	0.524689	0.002522	0.00013
100	0.038264	0.861472	0.053655	0.046608
101	0.0361	0.864973	0.061622	0.037306
102	0.170261	0.797599	0.031161	0.00098
103	0.026409	0.922791	0.046519	0.004281
104	0.332568	0.631815	0.03196	0.003657
105	0.026409	0.922791	0.046519	0.004281
106	0.031752	0.918152	0.043454	0.006643
107	0.053525	0.682003	0.132732	0.131739
108	0.033576	0.812004	0.072621	0.081799
109	0.163906	0.43311	0.102936	0.300049
110	0.040114	0.894768	0.044393	0.020726
111	0.036327	0.902614	0.031304	0.029755
112	0.033576	0.812004	0.072621	0.081799
113	0.178525	0.810632	0.010768	7.44E+09
114	0.508847	0.482262	0.006401	0.00249
115	0.056427	0.849983	0.075212	0.018377
116	0.076627	0.222298	0.04291	0.658165
117	0.471496	0.487706	0.034499	0.006299
118	0.026409	0.922791	0.046519	0.004281
119	0.096886	0.310193	0.033341	0.55958
120	0.170261	0.797599	0.031161	0.00098
121	0.040114	0.894768	0.044393	0.020726
122	0.617748	0.377909	7.26E+05	0.004344
123	0.025718	0.907051	0.057402	0.009828
124	0.326239	0.625578	0.039726	0.008457
125	0.0361	0.864973	0.061622	0.037306
126	0.0361	0.864973	0.061622	0.037306
127	0.035672	0.94067	0.021219	0.002439
128	0.138958	0.836083	0.024821	0.000137
129	0.15808	0.795474	0.044625	0.00182
130	0.026409	0.922791	0.046519	0.004281
131	0.150664	0.8344	0.014821	0.000115
132	0.0361	0.864973	0.061622	0.037306
133	0.026409	0.922791	0.046519	0.004281
134	0.059662	0.900019	0.026817	0.013502
135	0.045891	0.926243	0.019136	0.008729

			r	1
136	0.26123	0.657618	0.074341	0.006811
137	0.59195	0.3519	0.053775	0.002376
138	0.680918	0.310884	2.56E+06	0.008198
139	0.040114	0.894768	0.044393	0.020726
140	0.439288	0.555221	0.004371	0.00112
141	0.036327	0.902614	0.031304	0.029755
142	0.486151	0.508491	0.003758	0.0016
143	0.0361	0.864973	0.061622	0.037306
144	0.043435	0.939097	0.015842	0.001626
145	0.056427	0.849983	0.075212	0.018377
146	0.056427	0.849983	0.075212	0.018377
147	0.125636	0.361104	0.055525	0.457736
148	0.15808	0.795474	0.044625	0.00182
149	0.053525	0.682003	0.132732	0.131739
150	0.032449	0.929625	0.035047	0.00288
151	0.091693	0.869585	0.032182	0.00654
152	0.662562	0.135238	0.012578	0.189622
153	0.016305	0.085119	0.005755	0.892821
154	0.083377	0.428647	0.036574	0.451403
155	0.634708	0.091475	7.08E+04	0.273818
156	0.391541	0.601174	0.006134	0.001151
157	0.208295	0.667966	0.018988	0.104751
158	0.639962	0.121212	0.021874	0.216952
159	0.036001	0.034989	0.004132	0.924878
160	0.016305	0.085119	0.005755	0.892821
161	0.779157	0.203765	0.003946	0.013132
162	0.740247	0.219384	7.42E+05	0.040369
163	0.743994	0.034332	3.83E+05	0.221673
164	0.042904	0.184854	0.027633	0.744609
165	0.086253	0.835577	0.024196	0.053974
166	0.092892	0.141427	0.016972	0.748709
167	0.178248	0.204803	0.010998	0.605951
168	0.694565	0.222084	0.020987	0.062364
169	0.455773	0.455141	0.029833	0.059253
170	0.690634	0.295164	0.001785	0.012418
171	0.023311	0.025237	0.002084	0.949369
172	0.073466	0.793786	0.013793	0.118954
173	0.69295	0.172713	0.009703	0.124635
174	0.632256	0.169455	2.46E+06	0.198289
175	0.023553	0.029991	0.003641	0.942815
176	0.117682	0.232566	0.022855	0.626897
177	0.076587	0.886434	0.012577	0.024403
178	0.073466	0.793786	0.013793	0.118954
179	0.073466	0.793786	0.013793	0.118954
180	0.319133	0.656182	0.016125	0.008561
	0.092078	0.815701	0.0106	0.081621

183	0.727686	0.232676	0.011772	0.027866
				0.027800
19/	0.073305	0.856376	0.015254	0.055065
104	0.149574	0.581218	0.01657	0.252638
185	0.063294	0.126251	0.015575	0.79488
186	0.073305	0.856376	0.015254	0.055065
187	0.177649	0.326829	0.022368	0.473154
188	0.319535	0.302834	0.006992	0.370639
189	0.063294	0.126251	0.015575	0.79488
190	0.128673	0.793126	0.010352	0.06785
191	0.05951	0.625843	0.028044	0.286603
192	0.483283	0.376199	0.014659	0.125859
193	0.042434	0.450432	0.025338	0.481795
194	0.126819	0.190903	0.010538	0.67174
195	0.05951	0.625843	0.028044	0.286603
196	0.360402	0.417446	0.011949	0.210204
197	0.051645	0.065152	0.006301	0.876902
198	0.302358	0.544212	0.015898	0.137532
199	0.063294	0.126251	0.015575	0.79488
200	0.482997	0.488981	0.006524	0.021498
201	0.052974	0.820038	0.032642	0.094346
202	0.28602	0.701744	0.009843	0.002393
203	0.074053	0.725007	0.022625	0.178315
204	0.574317	0.091378	0.005052	0.329253
205	0.066576	0.069966	0.018783	0.844675
206	0.693378	0.148066	8.92E+05	0.158556
207	0.663727	0.241504	9.56E+04	0.094769
208	0.292109	0.685606	0.016001	0.006284
209	0.627819	0.360241	0.003042	0.008898
210	0.183947	0.154755	0.011536	0.649762
211	0.057544	0.690798	0.029398	0.222261
212	0.057544	0.690798	0.029398	0.222261
213	0.073445	0.167229	0.019593	0.739733
214	0.061767	0.088948	0.00817	0.841115
215	0.671811	0.264332	0.003155	0.060702
216	0.515834	0.104358	0.00383	0.375977
217	0.929576	0.057888	1.49E+04	0.012536
218	0.191356	0.733361	0.074154	0.001128
219	0.237393	0.620132	0.140395	0.00208
220	0.506306	0.47437	0.017357	0.001967
221	0.500434	0.473246	0.021737	0.004583
222	0.391632	0.580165	0.027077	0.001125
223	0.052197	0.653148	0.118524	0.176131
224	0.039565	0.775551	0.142999	0.041885
225	0.51424	0.373795	0.104058	0.007907
226	0.191356	0.733361	0.074154	0.001128
227	0.029867	0.853779	0.111395	0.00496

		ı		1
228	0.286672	0.659774	0.048431	0.005123
229	0.605949	0.357906	0.028604	0.00754
230	0.039565	0.775551	0.142999	0.041885
231	0.174634	0.718923	0.104383	0.00206
232	0.039565	0.775551	0.142999	0.041885
233	0.506306	0.47437	0.017357	0.001967
234	0.506306	0.47437	0.017357	0.001967
235	0.520906	0.473062	0.005885	0.000147
236	0.237393	0.620132	0.140395	0.00208
237	0.56159	0.426542	0.010028	0.00184
238	0.553403	0.429083	0.014739	0.002775
239	0.052197	0.653148	0.118524	0.176131
240	0.594249	0.289006	0.114303	0.002443
241	0.043602	0.878095	0.062785	0.015519
242	0.174634	0.718923	0.104383	0.00206
243	0.200284	0.728827	0.068242	0.002647
244	0.037292	0.874035	0.085283	0.00339
245	0.039565	0.775551	0.142999	0.041885
246	0.039565	0.775551	0.142999	0.041885
247	0.56159	0.426542	0.010028	0.00184
248	0.174634	0.718923	0.104383	0.00206
249	0.068848	0.849667	0.065524	0.015961
250	0.057273	0.847251	0.069903	0.025573
251	0.247459	0.650312	0.092927	0.009302
252	0.496318	0.419996	0.076893	0.006793
253	0.265354	0.656014	0.069147	0.009485
254	0.174634	0.718923	0.104383	0.00206
255	0.273539	0.694776	0.028399	0.003287
256	0.237139	0.62901	0.112836	0.021015
257	0.271095	0.558312	0.163352	0.007241
258	0.131195	0.787639	0.080923	0.000243
259	0.614698	0.341447	0.041768	0.002087
260	0.247459	0.650312	0.092927	0.009302
261	0.206278	0.477681	0.239918	0.076124
262	0.506306	0.47437	0.017357	0.001967
263	0.039565	0.775551	0.142999	0.041885
264	0.204925	0.73882	0.055106	0.001149
265	0.721579	0.269521	5.74E+06	0.0089
266	0.033404	0.550559	0.353742	0.062295
267	0.039565	0.775551	0.142999	0.041885
268	0.065752	0.819023	0.07929	0.035935
269	0.040879	0.516305	0.117618	0.325198
270	0.246393	0.637689	0.115002	0.000916
271	0.297405	0.686972	0.014814	0.00081
272	0.084103	0.64447	0.092572	0.178854
273	0.722535	0.201448	9.70E+05	0.076017
		•		

274	0.065137	0.873788	0.031996	0.029079
275	0.102916	0.556393	0.014748	0.325943
276	0.682929	0.207769	0.03253	0.076772
277	0.0965	0.732624	0.083828	0.087048
278	0.450279	0.523454	0.014357	0.011911
279	0.568245	0.115645	0.009188	0.306921
280	0.049486	0.871488	0.056809	0.022218
281	0.625514	0.248338	0.109664	0.016484
282	0.266522	0.675947	0.049034	0.008498
283	0.843303	0.058003	1.09E+05	0.098694
284	0.743312	0.051603	1.22E+06	0.205085
285	0.355235	0.571686	0.064664	0.008416
286	0.424124	0.382642	0.038481	0.154753
287	0.328701	0.635003	0.025876	0.010421
288	0.084103	0.64447	0.092572	0.178854
289	0.063407	0.637873	0.163109	0.13561
290	0.62092	0.105267	0.023217	0.250596
291	0.363882	0.580186	0.052275	0.003657
292	0.631809	0.182513	0.026461	0.159217
293	0.067261	0.893928	0.026075	0.012737
294	0.067261	0.893928	0.026075	0.012737
295	0.10514	0.879767	0.010733	0.00436
296	0.204355	0.755825	0.038797	0.001022
297	0.764328	0.213536	9.53E+05	0.022136
298	0.117934	0.746947	0.079884	0.055234
299	0.450279	0.523454	0.014357	0.011911
300	0.352583	0.57083	0.040753	0.035834
301	0.069471	0.781006	0.050105	0.099418
302	0.125852	0.863414	0.007877	0.002857
303	0.077956	0.112928	0.022453	0.786662
304	0.371483	0.501018	0.099287	0.028211
305	0.077798	0.798789	0.02679	0.096623
306	0.24087	0.730431	0.02804	0.00066
307	0.067511	0.837603	0.029922	0.064965
308	0.058667	0.855013	0.052325	0.033995
309	0.910783	0.080996	0.002428	0.005793
310	0.063407	0.637873	0.163109	0.13561
311	0.729962	0.218708	0.043216	0.008114
312	0.370385	0.564114	0.029707	0.035794
313	0.701683	0.276066	0.011299	0.010952
314	0.872255	0.101627	0.00585	0.020267
315	0.145062	0.329183	0.066504	0.459251
316	0.106893	0.683338	0.091744	0.118024
317	0.060115	0.682134	0.054937	0.202813
318	0.599583	0.385508	0.004926	0.009983
319	0.046847	0.571009	0.066035	0.31611
	•	•	•	•

		ı	ı	1
320	0.061017	0.881036	0.04295	0.014998
321	0.709304	0.285731	7.75E+05	0.004965
322	0.077798	0.798789	0.02679	0.096623
323	0.067511	0.837603	0.029922	0.064965
324	0.603389	0.374116	0.00982	0.012675
325	0.049486	0.871488	0.056809	0.022218
326	0.046847	0.571009	0.066035	0.31611
327	0.363882	0.580186	0.052275	0.003657
328	0.65354	0.341335	0.002598	0.002527
329	0.309875	0.668191	0.017647	0.004287
330	0.636576	0.359477	0.002805	0.001142
331	0.364651	0.616939	0.012914	0.005496
332	0.355235	0.571686	0.064664	0.008416
333	0.259239	0.723594	0.01662	0.000547
334	0.049486	0.871488	0.056809	0.022218
335	0.046847	0.571009	0.066035	0.31611
336	0.085496	0.779173	0.032118	0.103212
337	0.308385	0.440589	0.037228	0.213799
338	0.24087	0.730431	0.02804	0.00066
339	0.278836	0.211847	0.048901	0.460415
340	0.872255	0.101627	0.00585	0.020267
341	0.080076	0.887846	0.024206	0.007873
342	0.061017	0.881036	0.04295	0.014998
343	0.709304	0.285731	7.75E+05	0.004965
344	0.073183	0.518666	0.072682	0.335468
345	0.843303	0.058003	1.09E+05	0.098694
346	0.067261	0.893928	0.026075	0.012737
347	0.081711	0.890395	0.019423	0.008471
348	0.200583	0.7488	0.048252	0.002365
349	0.266522	0.675947	0.049034	0.008498
350	0.664884	0.280098	0.028736	0.026282
351	0.84683	0.099586	0.007197	0.046387
352	0.603389	0.374116	0.00982	0.012675
353	0.631809	0.182513	0.026461	0.159217
354	0.286021	0.675304	0.034115	0.00456
355	0.673187	0.318587	0.004355	0.003871
356	0.701683	0.276066	0.011299	0.010952
357	0.744935	0.248335	6.33E+05	0.00673
358	0.363882	0.580186	0.052275	0.003657
359	0.629854	0.300177	0.047754	0.022214
360	0.246407	0.677695	0.068524	0.007373
361	0.163167	0.735868	0.090382	0.010582
362	0.239233	0.553229	0.194928	0.012611
363	0.571428	0.402221	0.025179	0.001171
364	0.228288	0.657291	0.113711	0.00071
365	0.037875	0.908996	0.050909	0.002221

	1	1	1	1
366	0.367076	0.604956	0.027085	0.000883
367	0.805903	0.169558	0.018741	0.005798
368	0.564679	0.403594	0.020019	0.011707
369	0.676	0.246133	0.029911	0.047956
370	0.854944	0.135748	0.006714	0.002594
371	0.049581	0.690206	0.12015	0.140063
372	0.160576	0.735409	0.10243	0.001585
373	0.612859	0.377102	4.32E+06	0.010039
374	0.854944	0.135748	0.006714	0.002594
375	0.786517	0.069464	1.72E+06	0.144019
376	0.328668	0.57359	0.090434	0.007307
377	0.58211	0.3825	0.029326	0.006064
378	0.055553	0.761608	0.167322	0.015517
379	0.050628	0.777805	0.075394	0.096172
380	0.597748	0.199049	0.054534	0.14867
381	0.039621	0.887686	0.060887	0.011806
382	0.590415	0.390241	6.42E+06	0.019343
383	0.246407	0.677695	0.068524	0.007373
384	0.571428	0.402221	0.025179	0.001171
385	0.858242	0.075098	1.49E+05	0.06666
386	0.571428	0.402221	0.025179	0.001171
387	0.663385	0.218863	0.047765	0.069987
388	0.305042	0.646338	0.042729	0.00589
389	0.246407	0.677695	0.068524	0.007373
390	0.171263	0.737	0.089744	0.001993
391	0.848576	0.137545	0.00994	0.00394
392	0.49032	0.464409	0.044917	0.000354
393	0.266267	0.681743	0.048006	0.003984
394	0.246407	0.677695	0.068524	0.007373
395	0.694263	0.269309	6.74E+06	0.036428
396	0.279114	0.699158	0.021015	0.000713
397	0.158791	0.605817	0.234221	0.001171
398	0.338336	0.585002	0.073471	0.003191
399	0.164499	0.781241	0.052972	0.001287
400	0.119923	0.800951	0.07894	0.000186
401	0.158791	0.605817	0.234221	0.001171
402	0.321636	0.623202	0.034533	0.020629
403	0.44413	0.461283	0.093605	0.000982
404	0.591686	0.401796	2.56E+06	0.006517
405	0.160576	0.735409	0.10243	0.001585
406	0.222523	0.717966	0.054802	0.004709
407	0.56907	0.287423	0.133554	0.009953
408	0.160576	0.735409	0.10243	0.001585
409	0.18978	0.784285	0.025867	6.79E+09
410	0.228288	0.657291	0.113711	0.00071
411	0.239233	0.553229	0.194928	0.012611
411	0.239233	0.553229	0.194928	0.012611

412	0.571507	0.309211	0.117315	0.001967
413	0.571428	0.402221	0.025179	0.001171
414	0.371464	0.606526	0.021631	0.000379
415	0.577634	0.35022	0.058626	0.01352
416	0.228288	0.657291	0.113711	0.00071
417	0.299422	0.65761	0.037694	0.005275
418	0.650395	0.31249	0.025834	0.011281
419	0.799425	0.171118	2.07E+06	0.029456
420	0.290644	0.571204	0.1305	0.007652
421	0.615325	0.368019	0.005336	0.011321
422	0.396007	0.57642	0.013356	0.014217
423	0.3153	0.671216	0.013082	0.000402
424	0.253374	0.714729	0.03113	0.000767
425	0.396007	0.57642	0.013356	0.014217
426	0.292585	0.648593	0.046671	0.012151
427	0.299422	0.65761	0.037694	0.005275
428	0.747523	0.19608	1.25E+06	0.056397
429	0.315436	0.651725	0.027555	0.005284
430	0.368282	0.551322	0.070755	0.009641
431	0.272744	0.708164	0.018455	0.000636
432	0.343035	0.616447	0.028501	0.012018
433	0.704918	0.265701	0.01746	0.01192
434	0.609485	0.272721	0.061798	0.055996
435	0.279924	0.68482	0.027439	0.007817
436	0.651945	0.321057	0.023035	0.003963
437	0.799425	0.171118	2.07E+06	0.029456
438	0.3153	0.671216	0.013082	0.000402
439	0.799425	0.171118	2.07E+06	0.029456
440	0.641162	0.344256	0.00714	0.007441
441	0.901541	0.059262	4.90E+05	0.039197
442	0.382505	0.529603	0.066308	0.021584
443	0.660122	0.327772	2.26E+06	0.012106
444	0.641144	0.238259	0.008767	0.11183
445	0.328816	0.653454	0.015597	0.002132
446	0.774064	0.201164	1.02E+06	0.024772
447	0.922311	0.045041	5.00E+05	0.032647
448	0.447675	0.534268	0.009258	0.008799
449	0.631549	0.34226	0.008912	0.017279
450	0.380542	0.598895	0.014224	0.006338
451	0.738839	0.20592	0.046167	0.009074
452	0.377944	0.560554	0.057306	0.004197
453	0.07296	0.481002	0.076478	0.369559
454	0.531916	0.451571	0.011947	0.004566
455	0.215221	0.740464	0.043125	0.001189
456	0.279924	0.68482	0.027439	0.007817
457	0.865449	0.059877	0.003849	0.070825

		ı		1
458	0.762505	0.234266	5.39E+05	0.003229
459	0.502401	0.447481	0.03321	0.016908
460	0.377944	0.560554	0.057306	0.004197
461	0.377944	0.560554	0.057306	0.004197
462	0.700896	0.218906	0.021654	0.058544
463	0.799425	0.171118	2.07E+06	0.029456
464	0.355551	0.590945	0.026655	0.02685
465	0.377944	0.560554	0.057306	0.004197
466	0.799425	0.171118	2.07E+06	0.029456
467	0.670135	0.191847	6.50E+06	0.138018
468	0.377944	0.560554	0.057306	0.004197
469	0.640075	0.283761	0.05122	0.024944
470	0.634451	0.307675	0.031931	0.025942
471	0.481216	0.400118	0.036368	0.082298
472	0.298305	0.573509	0.039079	0.089107
473	0.469325	0.353593	0.057717	0.119365
474	0.315436	0.651725	0.027555	0.005284
475	0.395782	0.526878	0.027523	0.049817
476	0.838012	0.053617	1.14E+06	0.108372
477	0.704607	0.187587	0.024581	0.083225
478	0.356616	0.615301	0.024313	0.003771
479	0.393198	0.47266	0.097966	0.036175
480	0.683701	0.270365	0.031329	0.014606
481	0.10342	0.699812	0.083748	0.11302
482	0.288132	0.651322	0.049416	0.01113
483	0.037478	0.286844	0.019013	0.656665
484	0.393198	0.47266	0.097966	0.036175
485	0.288132	0.651322	0.049416	0.01113
486	0.10342	0.699812	0.083748	0.11302
487	0.392258	0.532489	0.029329	0.045925
488	0.06147	0.661631	0.063747	0.213152
489	0.126298	0.546347	0.021668	0.305687
490	0.278553	0.635547	0.060532	0.025367
491	0.090419	0.878189	0.020036	0.011356
492	0.615555	0.377878	0.004124	0.002443
493	0.051331	0.813244	0.069604	0.065822
494	0.076392	0.626316	0.033898	0.263394
495	0.706511	0.180225	0.02177	0.091494
496	0.668508	0.31805	2.02E+05	0.013442
497	0.293794	0.682316	0.020075	0.003816
498	0.373987	0.539669	0.040296	0.046048
499	0.338619	0.644786	0.014187	0.002408
500	0.396252	0.288721	0.054537	0.26049
501	0.309129	0.650529	0.034372	0.00597
502	0.802412	0.172422	0.00604	0.019126
503	0.663324	0.264756	0.038513	0.033407
		<u> </u>		i -

		ı	ı	1
504	0.612941	0.20183	2.27E+06	0.185229
505	0.779172	0.052135	0.003878	0.164815
506	0.547776	0.441461	0.008576	0.002187
507	0.175046	0.745738	0.037325	0.041891
508	0.904105	0.041828	3.68E+05	0.054067
509	0.379827	0.544819	0.064453	0.010901
510	0.733129	0.237698	0.020598	0.008574
511	0.731372	0.254097	0.008665	0.005866
512	0.392258	0.532489	0.029329	0.045925
513	0.642553	0.326353	0.028736	0.002358
514	0.051331	0.813244	0.069604	0.065822
515	0.06147	0.661631	0.063747	0.213152
516	0.404045	0.515379	0.024817	0.055759
517	0.302073	0.641614	0.042558	0.013754
518	0.278334	0.698911	0.021078	0.001677
519	0.748669	0.199931	0.041319	0.010081
520	0.309129	0.650529	0.034372	0.00597
521	0.542686	0.441441	0.010766	0.005107
522	0.733967	0.235288	0.017518	0.013227
523	0.359693	0.613615	0.020832	0.00586
524	0.568176	0.024768	3.35E+04	0.407056
525	0.104703	0.856279	0.022923	0.016096
526	0.624292	0.160739	0.024374	0.190595
527	0.748669	0.199931	0.041319	0.010081
528	0.146024	0.762339	0.020085	0.071552
529	0.06147	0.661631	0.063747	0.213152
530	0.706511	0.180225	0.02177	0.091494
531	0.064419	0.836797	0.053561	0.045223
532	0.385322	0.545054	0.019147	0.050478
533	0.725358	0.235254	0.009825	0.029564
534	0.914916	0.060289	0.00566	0.019135
535	0.878543	0.091234	0.005493	0.02473
536	0.046832	0.508783	0.061538	0.382846
537	0.127142	0.802079	0.022509	0.048271
538	0.091255	0.827385	0.023118	0.058242
539	0.094546	0.77674	0.038976	0.089738
540	0.288132	0.651322	0.049416	0.01113
541	0.06147	0.661631	0.063747	0.213152
542	0.146867	0.529254	0.058263	0.265615
543	0.054613	0.857238	0.058444	0.029705
544	0.074481	0.746313	0.050076	0.12913
545	0.338619	0.644786	0.014187	0.002408
546	0.92675	0.060504	0.004525	0.002400
547	0.288132	0.651322	0.049416	0.01113
548	0.10342	0.699812	0.083748	0.11302
549	0.288132	0.651322	0.049416	0.01113
J - J	3.200132	0.031322	0.0-5-10	0.01113

550	0.617654	0.264815	0.055314	0.062216
551	0.041985	0.32549	0.054637	0.577888
552	0.454029	0.42983	0.068847	0.047294
553	0.688996	0.301828	0.004571	0.004605
554	0.427091	0.485363	0.028007	0.059538
555	0.478232	0.475965	0.014109	0.031695
556	0.351124	0.5664	0.059639	0.022837
557	0.351124	0.5664	0.059639	0.022837
558	0.359048	0.482484	0.141018	0.01745
559	0.578383	0.352241	0.033443	0.035933
560	0.734962	0.261537	0.00236	0.001141
561	0.378166	0.567894	0.041643	0.012298
562	0.737894	0.143104	4.94E+06	0.119001
563	0.118053	0.57005	0.094676	0.217221
564	0.098064	0.82896	0.035097	0.037879
565	0.118053	0.57005	0.094676	0.217221
566	0.442579	0.379654	0.109207	0.068559
567	0.658719	0.262197	0.012541	0.066543
568	0.639284	0.195592	0.0567	0.108424
569	0.098064	0.82896	0.035097	0.037879
570	0.088783	0.700615	0.036329	0.174273
571	0.088221	0.810215	0.057331	0.044232
572	0.113693	0.735605	0.028525	0.122176
573	0.446449	0.432484	0.033059	0.088008
574	0.048823	0.19942	0.072846	0.67891
575	0.813107	0.035693	0.005695	0.145505
576	0.070741	0.452638	0.168003	0.308617
577	0.041985	0.32549	0.054637	0.577888
578	0.062725	0.452694	0.052921	0.431661
579	0.119592	0.828874	0.026245	0.02529
580	0.027423	0.149778	0.013778	0.80902
581	0.693438	0.300965	0.003631	0.001966
582	0.414545	0.563292	0.017201	0.004963
583	0.062725	0.452694	0.052921	0.431661
584	0.081466	0.75516	0.067081	0.096293
585	0.027423	0.149778	0.013778	0.80902
586	0.291177	0.264594	0.032452	0.411777
587	0.937769	0.043689	0.004534	0.014008
588	0.351124	0.5664	0.059639	0.022837
589	0.118053	0.57005	0.094676	0.217221
590	0.085212	0.609304	0.056739	0.248745
591	0.911827	0.062905	0.003661	0.021608
592	0.715159	0.262553	0.006967	0.015322
593	0.426663	0.439354	0.045529	0.088453
594	0.107244	0.15479	0.045392	0.692574
	0.140198	0.128402	0.058712	0.672688

596 0.688594 0.271554 0.010346 0.029506 597 0.085212 0.609304 0.056739 0.248745 598 0.771044 0.192945 0.011463 0.024548 599 0.06326 0.715205 0.084953 0.136582 600 0.789439 0.138698 7.72E+05 0.071864 601 0.70776 0.256521 0.031347 0.004373 602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610		ı	ı		1
598 0.771044 0.192945 0.011463 0.024548 599 0.06326 0.715205 0.084953 0.136582 600 0.789439 0.138698 7.72E+05 0.071864 601 0.70776 0.256521 0.031347 0.004373 602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.15228 0.18015 0.066754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613	596	0.688594	0.271554	0.010346	0.029506
599 0.06326 0.715205 0.084953 0.136582 600 0.789439 0.138698 7.72E+05 0.071864 601 0.70776 0.256521 0.031347 0.004373 602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.066754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613	597	0.085212	0.609304	0.056739	0.248745
600 0.789439 0.138698 7.72E+05 0.071864 601 0.70776 0.256521 0.031347 0.004373 602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.06754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614	598	0.771044	0.192945	0.011463	0.024548
601 0.70776 0.256521 0.031347 0.004373 602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615	599	0.06326	0.715205	0.084953	0.136582
602 0.364055 0.603349 0.024636 0.007961 603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.50797 0.476027 0.010637 0.003378 618	600	0.789439	0.138698	7.72E+05	0.071864
603 0.333699 0.543316 0.071817 0.051168 604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.50797 0.476027 0.010637 0.00342 617 0.621577 0.366193 0.010163 0.002067 618	601	0.70776	0.256521	0.031347	0.004373
604 0.085212 0.609304 0.056739 0.248745 605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064889 615 0.507977 0.476027 0.010637 0.003342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619	602	0.364055	0.603349	0.024636	0.007961
605 0.461414 0.46793 0.061198 0.009458 606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000442 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.064703 0.064989 621	603	0.333699	0.543316	0.071817	0.051168
606 0.088783 0.700615 0.036329 0.174273 607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620	604	0.085212	0.609304	0.056739	0.248745
607 0.378166 0.567894 0.041643 0.012298 608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621	605	0.461414	0.46793	0.061198	0.009458
608 0.034776 0.158225 0.040403 0.766596 609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622	606	0.088783	0.700615	0.036329	0.174273
609 0.089064 0.434083 0.090505 0.386349 610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623	607	0.378166	0.567894	0.041643	0.012298
610 0.162398 0.094204 0.011371 0.732027 611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624	608	0.034776	0.158225	0.040403	0.766596
611 0.715428 0.180105 0.006754 0.097714 612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625	609	0.089064	0.434083	0.090505	0.386349
612 0.048187 0.311205 0.145006 0.495602 613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626	610	0.162398	0.094204	0.011371	0.732027
613 0.715159 0.262553 0.006967 0.015322 614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693	611	0.715428	0.180105	0.006754	0.097714
614 0.045207 0.825102 0.064703 0.064989 615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693	612	0.048187	0.311205	0.145006	0.495602
615 0.507977 0.476027 0.010637 0.00536 616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 630	613	0.715159	0.262553	0.006967	0.015322
616 0.490355 0.505724 0.003578 0.000342 617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.825102 0.064703 0.064989 631	614	0.045207	0.825102	0.064703	0.064989
617 0.621577 0.366193 0.010163 0.002067 618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 631 0.045207 0.825102 0.064703 0.064989 632	615	0.507977	0.476027	0.010637	0.00536
618 0.396696 0.535921 0.036546 0.030838 619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633	616	0.490355	0.505724	0.003578	0.000342
619 0.202373 0.440431 0.118105 0.239091 620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635	617	0.621577	0.366193	0.010163	0.002067
620 0.045207 0.825102 0.064703 0.064989 621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634	618	0.396696	0.535921	0.036546	0.030838
621 0.650115 0.274826 0.056615 0.018444 622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636	619	0.202373	0.440431	0.118105	0.239091
622 0.29219 0.691029 0.012013 0.004768 623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636	620	0.045207	0.825102	0.064703	0.064989
623 0.827797 0.093923 0.005686 0.072594 624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638	621	0.650115	0.274826	0.056615	0.018444
624 0.045207 0.825102 0.064703 0.064989 625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638	622	0.29219	0.691029	0.012013	0.004768
625 0.21142 0.754443 0.032444 0.001693 626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639	623	0.827797	0.093923	0.005686	0.072594
626 0.656799 0.231945 1.67E+06 0.111256 627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	624	0.045207	0.825102	0.064703	0.064989
627 0.196623 0.753688 0.046541 0.003149 628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	625	0.21142	0.754443	0.032444	0.001693
628 0.277801 0.669451 0.051346 0.001402 629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	626	0.656799	0.231945	1.67E+06	0.111256
629 0.146267 0.817638 0.035727 0.000367 630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	627	0.196623	0.753688	0.046541	0.003149
630 0.54382 0.326317 0.122665 0.007198 631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	628	0.277801	0.669451	0.051346	0.001402
631 0.045207 0.825102 0.064703 0.064989 632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	629	0.146267	0.817638	0.035727	0.000367
632 0.756389 0.205695 0.025118 0.012798 633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	630	0.54382	0.326317	0.122665	0.007198
633 0.704384 0.162029 0.043517 0.09007 634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	631	0.045207	0.825102	0.064703	0.064989
634 0.050922 0.865226 0.047251 0.036601 635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	632	0.756389	0.205695	0.025118	0.012798
635 0.277801 0.669451 0.051346 0.001402 636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	633	0.704384	0.162029	0.043517	0.09007
636 0.196641 0.742254 0.040418 0.020687 637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	634	0.050922	0.865226	0.047251	0.036601
637 0.040874 0.900328 0.046903 0.011896 638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	635	0.277801	0.669451	0.051346	0.001402
638 0.21142 0.754443 0.032444 0.001693 639 0.048571 0.738502 0.160751 0.052175	636	0.196641	0.742254	0.040418	0.020687
639 0.048571 0.738502 0.160751 0.052175	637	0.040874	0.900328	0.046903	0.011896
	638	0.21142	0.754443	0.032444	0.001693
640 0.071199 0.816969 0.079574 0.032258	639	0.048571	0.738502	0.160751	0.052175
	640	0.071199	0.816969	0.079574	0.032258
641 0.099931 0.876486 0.014972 0.008611	641	0.099931	0.876486	0.014972	0.008611

		ı		1
642	0.286814	0.645221	0.060608	0.007356
643	0.248493	0.727036	0.023382	0.001089
644	0.116041	0.838296	0.03415	0.011513
645	0.210416	0.671898	0.115168	0.002518
646	0.047573	0.815879	0.055935	0.080613
647	0.075857	0.871674	0.028589	0.023881
648	0.277801	0.669451	0.051346	0.001402
649	0.73285	0.254876	2.31E+06	0.012274
650	0.313235	0.600662	0.074743	0.011361
651	0.071199	0.816969	0.079574	0.032258
652	0.048064	0.901297	0.027408	0.023231
653	0.630692	0.346861	0.01179	0.010657
654	0.233117	0.752716	0.01348	0.000687
655	0.871429	0.118221	0.003788	0.006563
656	0.196623	0.753688	0.046541	0.003149
657	0.528433	0.384186	0.065314	0.022068
658	0.059016	0.820481	0.036142	0.084361
659	0.192063	0.743082	0.057603	0.007251
660	0.040874	0.900328	0.046903	0.011896
661	0.544791	0.392416	0.053142	0.00965
662	0.146267	0.817638	0.035727	0.000367
663	0.641535	0.298407	7.59E+06	0.060058
664	0.045895	0.86865	0.033161	0.052295
665	0.876631	0.116499	0.002555	0.004315
666	0.118862	0.342775	0.205417	0.332946
667	0.045207	0.825102	0.064703	0.064989
668	0.835845	0.147188	0.007213	0.009755
669	0.277801	0.669451	0.051346	0.001402
670	0.047573	0.815879	0.055935	0.080613
671	0.065395	0.700483	0.08356	0.150562
672	0.050922	0.865226	0.047251	0.036601
673	0.573836	0.384792	0.03629	0.005082
674	0.221728	0.766929	0.011214	0.000129
675	0.292362	0.595953	0.100534	0.011152
676	0.621577	0.366193	0.010163	0.002067
677	0.192063	0.743082	0.057603	0.007251
678	0.21142	0.754443	0.032444	0.001693
679	0.666421	0.307116	6.22E+06	0.026463
680	0.648688	0.334076	1.70E+06	0.017236
681	0.08265	0.884146	0.020195	0.013009
682	0.277801	0.669451	0.051346	0.001402
683	0.055146	0.916715	0.021369	0.006769
684	0.520114	0.315005	0.148652	0.01623
685	0.188028	0.716368	0.04897	0.046634
686	0.046123	0.926486	0.023004	0.004387
687	0.277801	0.669451	0.051346	0.001402

	1	1	1	,
688	0.667202	0.240422	0.06561	0.026766
689	0.188028	0.716368	0.04897	0.046634
690	0.662827	0.044396	8.78E+05	0.292777
691	0.544791	0.392416	0.053142	0.00965
692	0.280222	0.651073	0.03664	0.032066
693	0.210416	0.671898	0.115168	0.002518
694	0.286814	0.645221	0.060608	0.007356
695	0.248493	0.727036	0.023382	0.001089
696	0.651639	0.295087	0.049636	0.003638
697	0.906417	0.07111	5.09E+05	0.022472
698	0.043342	0.665142	0.181756	0.10976
699	0.221728	0.766929	0.011214	0.000129
700	0.21142	0.754443	0.032444	0.001693
701	0.695993	0.293883	1.12E+05	0.010124
702	0.21142	0.754443	0.032444	0.001693
703	0.69449	0.289943	9.47E+05	0.015567
704	0.322481	0.669842	0.00711	0.000567
705	0.504924	0.435641	0.00916	0.050275
706	0.801109	0.19539	0.002409	0.001091
707	0.947791	0.039114	0.00031	0.012786
708	0.944976	0.051532	0.000518	0.002974
709	0.963531	0.035156	0.000502	0.000811
710	0.96645	0.027357	0.002974	0.003219
711	0.954772	0.029742	0.001173	0.014312
712	0.961753	0.032681	0.00128	0.004286
713	0.952796	0.04658	0.000155	0.000468
714	0.990298	0.009098	6.66E+09	0.000538
715	0.788847	0.208026	0.002629	0.000499
716	0.948014	0.022699	0.005428	0.023859
717	0.942281	0.016114	0.000803	0.040802
718	0.860783	0.136318	0.001251	0.001649
719	0.971406	0.006826	0.000213	0.021555
720	0.363292	0.598869	0.017109	0.020729
721	0.841689	0.152202	0.002718	0.003391
722	0.935721	0.014849	0.001435	0.047995
723	0.431223	0.406059	0.045508	0.11721
724	0.991341	0.004012	4.11E+04	0.004647
725	0.810346	0.180759	0.005024	0.003871
726	0.971406	0.006826	0.000213	0.021555
727	0.855284	0.129613	0.004056	0.011047
728	0.965124	0.025268	0.00268	0.006928
729	0.971406	0.006826	0.000213	0.021555
730	0.831557	0.166289	0.001533	0.00062
731	0.494585	0.421911	0.007622	0.075882
732	0.983722	0.006849	0.00017	0.009259
733	0.434439	0.504531	0.007899	0.053131
		i		i

Г		T		
734	0.839211	0.085487	0.001778	0.073524
735	0.903934	0.07563	0.002655	0.01778
736	0.943811	0.042496	0.00372	0.009973
737	0.898081	0.097725	0.001175	0.003019
738	0.942281	0.016114	0.000803	0.040802
739	0.988518	0.006539	2.09E+04	0.004943
740	0.343676	0.24799	0.009854	0.39848
741	0.947152	0.051173	0.00041	0.001264
742	0.986063	0.010754	0.000271	0.002912
743	0.457293	0.098041	0.010898	0.433768
744	0.961753	0.032681	0.00128	0.004286
745	0.955231	0.025242	0.003361	0.016166
746	0.267866	0.16252	0.022503	0.547111
747	0.810346	0.180759	0.005024	0.003871
748	0.971406	0.006826	0.000213	0.021555
749	0.855284	0.129613	0.004056	0.011047
750	0.965124	0.025268	0.00268	0.006928
751	0.971406	0.006826	0.000213	0.021555
752	0.831557	0.166289	0.001533	0.00062
753	0.494585	0.421911	0.007622	0.075882
754	0.983722	0.006849	0.00017	0.009259
755	0.434439	0.504531	0.007899	0.053131
756	0.839211	0.085487	0.001778	0.073524
757	0.903934	0.07563	0.002655	0.01778
758	0.943811	0.042496	0.00372	0.009973
759	0.898081	0.097725	0.001175	0.003019
760	0.942281	0.016114	0.000803	0.040802
761	0.988518	0.006539	2.09E+04	0.004943
762	0.343676	0.24799	0.009854	0.39848
763	0.947152	0.051173	0.00041	0.001264
764	0.986063	0.010754	0.000271	0.002912
765	0.457293	0.098041	0.010898	0.433768
766	0.961753	0.032681	0.00128	0.004286
767	0.955231	0.025242	0.003361	0.016166
768	0.267866	0.16252	0.022503	0.547111
769	0.835462	0.155276	0.001475	0.007787
770	0.927605	0.070184	0.000332	0.001879
771	0.988607	0.010728	5.80E+09	0.000606
772	0.951077	0.047028	0.000491	0.001404
773	0.806105	0.190034	0.001396	0.002465
774	0.684004	0.311597	0.003621	0.000778
775	0.840215	0.152611	0.003037	0.004138
776	0.840215	0.152611	0.003037	0.004138
777	0.927164	0.072072	0.000132	0.000632
778	0.614103	0.159789	0.005089	0.221018
779	0.873276	0.123883	0.000613	0.002228

780	0.814596	0.182714	0.001153	0.001537
781	0.940533	0.054699	0.001569	0.003199
782	0.956406	0.038481	0.000498	0.004615
783	0.983665	0.013986	0.000145	0.002204
784	0.94932	0.029634	0.002915	0.018131
785	0.977514	0.004815	2.48E+03	0.017671
786	0.949362	0.029874	2.53E+02	0.020764
787	0.9356	0.05492	0.001978	0.007503
788	0.927605	0.070184	0.000332	0.001879
789	0.360468	0.5312	0.008824	0.099507
790	0.754098	0.083926	0.001259	0.160718
791	0.977514	0.004815	2.48E+03	0.017671
792	0.983665	0.013986	0.000145	0.002204
793	0.953839	0.042254	0.000681	0.003226
794	0.759525	0.235064	0.003075	0.002336
795	0.792232	0.206536	0.000783	0.000448
796	0.960305	0.005145	1.72E+04	0.03455
797	0.834238	0.162316	0.002637	0.000809
798	0.954227	0.042372	0.000305	0.003096
799	0.953374	0.039061	0.000614	0.006951
800	0.969978	0.025566	0.000238	0.004218
801	0.940732	0.005615	1.31E+04	0.053654
802	0.956126	0.041964	0.000539	0.001372
803	0.962523	0.035192	0.001254	0.001032
804	0.745031	0.253766	0.001051	0.000152
805	0.936123	0.059554	0.000982	0.003341
806	0.891934	0.104217	0.001229	0.00262
807	0.953275	0.035391	0.000999	0.010335
808	0.848302	0.146775	0.000971	0.003953
809	0.976838	0.004934	6.99E+09	0.018159
810	0.976838	0.004934	6.99E+09	0.018159
811	0.952668	0.019681	0.00077	0.026881
812	0.952668	0.019681	0.00077	0.026881
813	0.911899	0.002719	1.26E+02	0.085382
814	0.976838	0.004934	6.99E+09	0.018159
815	0.965821	0.029098	0.000806	0.004275
816	0.961388	0.016545	0.001798	0.02027
817	0.982065	0.004132	0.000162	0.013641
818	0.965821	0.029098	0.000806	0.004275
819	0.952668	0.019681	0.00077	0.026881
820	0.976838	0.004934	6.99E+09	0.018159
821	0.959444	0.021875	0.000477	0.018204
822	0.937866	0.003086	7.95E+03	0.059048
823	0.982205	0.005475	4.32E+09	0.012277
824	0.959444	0.021875	0.000477	0.018204
825	0.959444	0.021875	0.000477	0.018204

		ı		1
826	0.959444	0.021875	0.000477	0.018204
827	0.986111	0.004579	0.0001	0.00921
828	0.966819	0.018363	0.001111	0.013707
829	0.959444	0.021875	0.000477	0.018204
830	0.966819	0.018363	0.001111	0.013707
831	0.959444	0.021875	0.000477	0.018204
832	0.959444	0.021875	0.000477	0.018204
833	0.959444	0.021875	0.000477	0.018204
834	0.959444	0.021875	0.000477	0.018204
835	0.959444	0.021875	0.000477	0.018204
836	0.959444	0.021875	0.000477	0.018204
837	0.972203	0.023744	0.000423	0.00363
838	0.976429	0.019866	0.000981	0.002724
839	0.971064	0.028358	0.000267	0.000311
840	0.972203	0.023744	0.000423	0.00363
841	0.972203	0.023744	0.000423	0.00363
842	0.976429	0.019866	0.000981	0.002724
843	0.972203	0.023744	0.000423	0.00363
844	0.976429	0.019866	0.000981	0.002724
845	0.972203	0.023744	0.000423	0.00363
846	0.976429	0.019866	0.000981	0.002724
847	0.972203	0.023744	0.000423	0.00363
848	0.972203	0.023744	0.000423	0.00363
849	0.972203	0.023744	0.000423	0.00363
850	0.959231	0.031043	0.001235	0.008491
851	0.959231	0.031043	0.001235	0.008491
852	0.69343	0.047395	0.000549	0.258626
853	0.959444	0.021875	0.000477	0.018204
854	0.839519	0.159123	0.000914	0.000445
855	0.947719	0.030957	0.001546	0.019778
856	0.959231	0.031043	0.001235	0.008491
857	0.895513	0.090512	0.002497	0.011478
858	0.964644	0.034358	0.000433	0.000565
859	0.835664	0.145262	0.003307	0.015767
860	0.84683	0.149838	0.001054	0.002279
861	0.976429	0.019866	0.000981	0.002724
862	0.959231	0.031043	0.001235	0.008491
863	0.961388	0.016545	0.001798	0.02027
864	0.959231	0.031043	0.001235	0.008491
865	0.69343	0.047395	0.000549	0.258626
866	0.959444	0.021875	0.000477	0.018204
867	0.839519	0.159123	0.000914	0.000445
868	0.947719	0.030957	0.001546	0.019778
869	0.959231	0.031043	0.001235	0.008491
870	0.895513	0.090512	0.002497	0.011478
871	0.964644	0.034358	0.000433	0.000565
		•		

872	0.835664	0.145262	0.003307	0.015767
873	0.84683	0.149838	0.001054	0.002279
874	0.976429	0.019866	0.000981	0.002724
875	0.959231	0.031043	0.001235	0.008491
876	0.961388	0.016545	0.001798	0.02027
877	0.959231	0.031043	0.001235	0.008491
878	0.19553	0.788233	0.009134	0.007103
879	0.948766	0.043385	0.000389	0.00746
880	0.985217	0.013066	1.27E+04	0.001717
881	0.945724	0.032948	0.001848	0.01948
882	0.665397	0.321801	0.011519	0.001283
883	0.665397	0.321801	0.011519	0.001283
884	0.926704	0.071614	6.05E+04	0.001682
885	0.23225	0.76054	0.00525	0.001959
886	0.864645	0.135058	0.0002	9.72E+09
887	0.25407	0.721567	0.004582	0.019781
888	0.882297	0.116575	0.000379	0.00075
889	0.98	0.018243	8.15E+08	0.001675
890	0.28715	0.709636	0.002192	0.001022
891	0.896835	0.097838	0.002767	0.002559
892	0.614541	0.327969	0.004568	0.052921
893	0.981009	0.015869	2.06E+04	0.003123
894	0.754292	0.232869	0.008204	0.004635
895	0.956972	0.039415	0.001005	0.002608
896	0.2761	0.703945	0.006395	0.01356
897	0.929201	0.064855	2.74E+05	0.005944
898	0.982866	0.016873	1.42E+04	0.000261
899	0.981009	0.015869	2.06E+04	0.003123
900	0.247455	0.684039	0.011202	0.057304
901	0.632038	0.363536	0.003734	0.000692
902	0.873904	0.124032	0.000579	0.001485
903	0.312587	0.652103	0.004779	0.030531
904	0.632038	0.363536	0.003734	0.000692
905	0.588543	0.408539	0.002788	0.00013
906	0.588543	0.408539	0.002788	0.00013
907	0.983997	0.013827	0.000308	0.001869
908	0.66951	0.320795	0.009147	0.000547
909	0.915424	0.082172	0.000301	0.002104
910	0.557337	0.289508	0.010398	0.142757
911	0.92551	0.069853	0.00089	0.003746
912	0.247948	0.747354	0.003087	0.001611
913	0.922385	0.076119	0.00043	0.001065
914	0.925348	0.064442	0.001794	0.008416
915	0.55037	0.416921	0.010596	0.022113
916	0.709299	0.287419	0.001618	0.001664
917	0.593792	0.195078	0.005493	0.205637

918	0.299956	0.692003	0.002618	0.005423
919	0.35963	0.619204	0.010033	0.011133
920	0.268923	0.692047	0.007893	0.031136
921	0.351348	0.61059	0.01242	0.025642
922	0.791802	0.206402	0.000689	0.001108
923	0.476614	0.516654	0.003501	0.003231
924	0.875765	0.123146	0.000458	0.000631
925	0.258218	0.707192	0.009226	0.025364
926	0.829383	0.170076	0.000447	9.38E+09
927	0.2761	0.703945	0.006395	0.01356
928	0.899499	0.097222	0.00219	0.001089
929	0.672877	0.326016	0.000971	0.000136
930	0.284703	0.710155	0.002754	0.002388
931	0.899499	0.097222	0.00219	0.001089
932	0.934376	0.063491	0.001777	0.000356
933	0.743721	0.251052	0.003923	0.001303
934	0.357587	0.574754	0.011406	0.056254
935	0.364662	0.531098	0.018928	0.085313
936	0.364662	0.531098	0.018928	0.085313
937	0.971278	0.028509	9.24E+07	0.000121
938	0.247948	0.747354	0.003087	0.001611
939	0.932794	0.066634	0.000345	0.000226
940	0.351348	0.61059	0.01242	0.025642
941	0.615863	0.297817	0.007449	0.078871
942	0.917196	0.081838	0.000474	0.000491
943	0.288911	0.562643	0.00505	0.143397
944	0.247948	0.747354	0.003087	0.001611
945	0.920267	0.076392	9.27E+04	0.003342
946	0.66951	0.320795	0.009147	0.000547
947	0.829383	0.170076	0.000447	9.38E+09
948	0.78895	0.207579	0.00087	0.002602
949	0.892951	0.10622	0.000758	7.15E+09
950	0.921425	0.076725	0.00113	0.00072
951	0.35963	0.619204	0.010033	0.011133
952	0.279291	0.643146	0.029237	0.048327
953	0.893887	0.10588	0.000114	0.000119
954	0.324271	0.566923	0.007279	0.101527
955	0.976321	0.021691	0.000616	0.001371
956	0.951503	0.04714	0.000402	0.000955
957	0.980978	0.014378	3.35E+04	0.004644
958	0.258218	0.707192	0.009226	0.025364
959	0.539153	0.456464	0.004165	0.000218
960	0.64658	0.349448	0.003138	0.000834
961	0.935198	0.054254	0.004192	0.006356
962	0.743721	0.251052	0.003923	0.001303
963	0.979938	0.019764	8.39E+08	0.000214

964	0.35963	0.619204	0.010033	0.011133
965	0.28715	0.709636	0.002192	0.001022
966	0.665397	0.321801	0.011519	0.001283
967	0.789849	0.206977	0.002691	0.000484
968	0.738486	0.253534	0.006328	0.001652
969	0.98944	0.009811	0.000241	0.000508
970	0.861544	0.135578	0.00128	0.001599
971	0.920672	0.077273	0.000698	0.001357
972	0.940064	0.050522	0.007677	0.001738
973	0.934126	0.060264	0.003299	0.002311
974	0.953067	0.042538	0.00105	0.003345
975	0.950304	0.04681	0.000643	0.002243
976	0.984543	0.014456	0.000199	0.000802
977	0.940216	0.056468	0.002153	0.001163
978	0.977844	0.009937	0.000243	0.011976
979	0.988	0.009145	0.000276	0.002579
980	0.98944	0.009811	0.000241	0.000508
981	0.662312	0.331599	0.005857	0.000232
982	0.977844	0.009937	0.000243	0.011976
983	0.951215	0.039174	0.00211	0.007501
984	0.961055	0.035936	4.74E+04	0.003009
985	0.910652	0.085676	0.003319	0.000353
986	0.834902	0.160246	0.002022	0.00283
987	0.950465	0.043199	0.001296	0.00504
988	0.948927	0.050071	0.000562	0.000441
989	0.981908	0.00859	4.86E+04	0.009502
990	0.79181	0.205152	0.002291	0.000747
991	0.382029	0.468395	0.009221	0.140355
992	0.991581	0.007374	0.000113	0.000932
993	0.964212	0.027381	0.001416	0.006991
994	0.953287	0.038308	0.000211	0.008193
995	0.948264	0.045884	0.00156	0.004293
996	0.946095	0.053742	7.14E+09	9.24E+09
997	0.985464	0.010954	0.000118	0.003464
998	0.985509	0.012089	7.24E+08	0.00233
999	0.859303	0.136518	0.000596	0.003584
1000	0.882639	0.114971	0.000375	0.002015
1001	0.854421	0.139606	0.003374	0.002598
1002	0.727114	0.142433	0.002239	0.128214
1003	0.867695	0.118815	0.005032	0.008458
1004	0.962481	0.035146	0.000535	0.001838
1005	0.929607	0.06997	0.000208	0.000215
1006	0.857421	0.138801	0.002672	0.001106
1007	0.408394	0.060065	0.002552	0.528989
1008	0.986958	0.011995	5.72E+09	0.00099
1009	0.348364	0.622883	0.008677	0.020076
	•	•	•	•

1010 0.780833 0.113099 0.006065 0.100003 1011 0.957463 0.032639 0.000608 0.00929 1012 0.607269 0.139912 0.00604 0.246779 1013 0.934944 0.064774 0.000115 0.000167 1014 0.984647 0.004363 2.73E+04 0.01099 1015 0.85288 0.13009 0.003851 0.013179 1016 0.762916 0.234889 0.001927 0.000268 1017 0.989869 0.008837 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.940969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.00265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1035 0.639786 0.358351 0.00181 5.23E+09 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00384 0.00293 1044 0.94224 0.052885 0.00384 0.00293 1044 0.94224 0.052885 0.00384 0.00293 1044 0.94224 0.052885 0.00384 0.00293 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.00625 1047 0.879325 0.120407 0.00622 4.73E+08 1049 0.984873 0.007978 5.02E+04 0.001188 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152	r		ı		1
1012 0.607269 0.139912 0.00604 0.246779 1013 0.934944 0.064774 0.000115 0.000167 1014 0.984647 0.004363 2.73E+04 0.01099 1015 0.85288 0.13009 0.003851 0.013179 1016 0.762916 0.234889 0.001927 0.000268 1017 0.998869 0.008337 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.940969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000265 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000478 1025 0.753761 0.241168 0.004778 0.000293 <	1010	0.780833	0.113099	0.006065	0.100003
1013 0.934944 0.064774 0.000115 0.000167 1014 0.984647 0.004363 2.73E+04 0.01099 1015 0.85288 0.13009 0.003851 0.013179 1016 0.762916 0.234889 0.001927 0.000268 1017 0.988699 0.008337 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.9840969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000497 0.00128 1027 0.908805 0.086914 0.00304 0.001241	1011	0.957463	0.032639	0.000608	0.00929
1014 0.984647 0.004363 2.73E+04 0.01999 1015 0.85288 0.13009 0.003851 0.013179 1016 0.762916 0.234889 0.001927 0.000268 1017 0.989869 0.008337 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.9840969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000415 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000497 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.00125 1029 0.960027 0.032358 0.00125 0.006365 10	1012	0.607269	0.139912	0.00604	0.246779
1015 0.85288 0.13009 0.003851 0.013179 1016 0.762916 0.234889 0.001927 0.000268 1017 0.989869 0.008837 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.940969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000304 0.00128 1027 0.908805 0.086914 0.00304 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1	1013	0.934944	0.064774	0.000115	0.000167
1016 0.762916 0.234889 0.001927 0.000268 1017 0.989869 0.008837 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.940969 0.017454 0.000263 0.000507 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.003476 0.001297 0.00128 1027 0.908805 0.086914 0.00304 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.00357 0.00417 </td <td>1014</td> <td>0.984647</td> <td>0.004363</td> <td>2.73E+04</td> <td>0.01099</td>	1014	0.984647	0.004363	2.73E+04	0.01099
1017 0.989869 0.008837 4.86E+09 0.001245 1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.949069 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.00293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.00357 0.00417 10	1015	0.85288	0.13009	0.003851	0.013179
1018 0.965173 0.021363 0.000296 0.013168 1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.9498697 0.070553 0.000243 0.000507 1021 0.928677 0.070553 0.000265 0.000817 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.00304 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09	1016	0.762916	0.234889	0.001927	0.000268
1019 0.968915 0.027483 2.62E+04 0.003602 1020 0.940969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000415 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.00125 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.00081 1	1017	0.989869	0.008837	4.86E+09	0.001245
1020 0.940969 0.017454 0.000424 0.041152 1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.3358351 0.00181 5.23E+09 1034 0.720804 0.276844 0.001976 0.00375	1018	0.965173	0.021363	0.000296	0.013168
1021 0.928677 0.070553 0.000263 0.000507 1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.3358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.00131 0.001263 1	1019	0.968915	0.027483	2.62E+04	0.003602
1022 0.948046 0.050741 0.000104 0.001109 1023 0.960891 0.038028 0.000265 0.000817 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1036 0.929682 0.067725 0.00131 0.001263 1	1020	0.940969	0.017454	0.000424	0.041152
1023 0.960891 0.038028 0.000265 0.000405 1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1	1021	0.928677	0.070553	0.000263	0.000507
1024 0.940587 0.056551 0.002457 0.000405 1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.92896 0.063169 0.00152 0.006411 103	1022	0.948046	0.050741	0.000104	0.001109
1025 0.753761 0.241168 0.004778 0.000293 1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.92899 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 103	1023	0.960891	0.038028	0.000265	0.000817
1026 0.810752 0.187 0.000969 0.00128 1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.001241 1041	1024	0.940587	0.056551	0.002457	0.000405
1027 0.908805 0.086914 0.00304 0.001241 1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.002917 1042 0.749671 0.243554 0.00384 0.002917 1	1025	0.753761	0.241168	0.004778	0.000293
1028 0.962881 0.034766 0.001097 0.001256 1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.00131 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.00348 1040 0.908805 0.086914 0.00304 0.002917 1042 0.749671 0.243554 0.00384 0.002951 104	1026	0.810752	0.187	0.000969	0.00128
1029 0.960027 0.032358 0.00125 0.006365 1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00384 0.002917 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1	1027	0.908805	0.086914	0.00304	0.001241
1030 0.675829 0.320197 0.003557 0.000417 1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.003824 0.002951 1042 0.749671 0.243554 0.003824 0.002951 1043 0.933189 0.052885 0.002814 0.002061 <td< td=""><td>1028</td><td>0.962881</td><td>0.034766</td><td>0.001097</td><td>0.001256</td></td<>	1028	0.962881	0.034766	0.001097	0.001256
1031 0.639786 0.358351 0.00181 5.23E+09 1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 10	1029	0.960027	0.032358	0.00125	0.006365
1032 0.689681 0.307395 0.002519 0.000405 1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.002953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1	1030	0.675829	0.320197	0.003557	0.000417
1033 0.658638 0.335201 0.005347 0.000813 1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.00384 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 10	1031	0.639786	0.358351	0.00181	5.23E+09
1034 0.720804 0.276844 0.001976 0.000375 1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 10	1032	0.689681	0.307395	0.002519	0.000405
1035 0.639786 0.358351 0.00181 5.23E+09 1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.00689 104	1033	0.658638	0.335201	0.005347	0.000813
1036 0.929682 0.067725 0.001331 0.001263 1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1	1034	0.720804	0.276844	0.001976	0.000375
1037 0.9289 0.063169 0.00152 0.006411 1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.005405 1051 0.672797 0.321736 0.004487 0.000979 1	1035	0.639786	0.358351	0.00181	5.23E+09
1038 0.753761 0.241168 0.004778 0.000293 1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 <t< td=""><td>1036</td><td>0.929682</td><td>0.067725</td><td>0.001331</td><td>0.001263</td></t<>	1036	0.929682	0.067725	0.001331	0.001263
1039 0.930492 0.067922 0.001238 0.000348 1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 <t< td=""><td>1037</td><td>0.9289</td><td>0.063169</td><td>0.00152</td><td>0.006411</td></t<>	1037	0.9289	0.063169	0.00152	0.006411
1040 0.908805 0.086914 0.00304 0.001241 1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001188 1053 0.571181 0.423924 0.004785 0.006411 <t< td=""><td>1038</td><td>0.753761</td><td>0.241168</td><td>0.004778</td><td>0.000293</td></t<>	1038	0.753761	0.241168	0.004778	0.000293
1041 0.905808 0.087436 0.00384 0.002917 1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1039	0.930492	0.067922	0.001238	0.000348
1042 0.749671 0.243554 0.003824 0.002951 1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1040	0.908805	0.086914	0.00304	0.001241
1043 0.938959 0.05698 0.003108 0.000953 1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1041	0.905808	0.087436	0.00384	0.002917
1044 0.94224 0.052885 0.002814 0.002061 1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1042	0.749671	0.243554	0.003824	0.002951
1045 0.933189 0.062874 0.001205 0.002732 1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1043	0.938959	0.05698	0.003108	0.000953
1046 0.915849 0.081539 0.001986 0.000625 1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1044	0.94224	0.052885	0.002814	0.002061
1047 0.879325 0.120407 0.00022 4.73E+08 1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1045	0.933189	0.062874	0.001205	0.002732
1048 0.750813 0.242467 0.006031 0.000689 1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1046	0.915849	0.081539	0.001986	0.000625
1049 0.984873 0.007978 5.02E+04 0.007149 1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1047	0.879325	0.120407	0.00022	4.73E+08
1050 0.451701 0.490038 0.002856 0.055405 1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1048	0.750813	0.242467	0.006031	0.000689
1051 0.672797 0.321736 0.004487 0.000979 1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1049	0.984873	0.007978	5.02E+04	0.007149
1052 0.987822 0.010289 1.90E+04 0.001888 1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1050	0.451701	0.490038	0.002856	0.055405
1053 0.571181 0.423924 0.004785 0.000111 1054 0.9289 0.063169 0.00152 0.006411	1051	0.672797	0.321736	0.004487	0.000979
1054 0.9289 0.063169 0.00152 0.006411	1052	0.987822	0.010289	1.90E+04	0.001888
 	1053	0.571181	0.423924	0.004785	0.000111
	1054	0.9289	0.063169	0.00152	0.006411
1055 0.849919 0.138135 0.00437 0.007576	1055	0.849919	0.138135	0.00437	0.007576

1056	0.936763	0.057189	0.001969	0.004078
1057	0.675829	0.320197	0.003557	0.000417
1058	0.76458	0.228366	0.005541	0.001512
1059	0.913893	0.082124	0.002512	0.001471
1060	0.966611	0.032957	0.000295	0.000136
1061	0.915849	0.081539	0.001986	0.000625
1062	0.931203	0.067208	0.001052	0.000536
1063	0.870102	0.129442	0.000395	6.08E+09
1064	0.908805	0.086914	0.00304	0.001241
1065	0.94224	0.052885	0.002814	0.002061
1066	0.912846	0.08669	0.000261	0.000203
1067	0.976014	0.022819	0.000289	0.000878
1068	0.775983	0.220784	0.001781	0.001452
1069	0.982338	0.014661	0.000183	0.002818
1070	0.836061	0.160642	0.002311	0.000986

B.2 Identificação das Variáveis

Variável	Descriminação
Variavei	Região Administrativa
V2	Escola
V2 V3	Rede de ensino
V4	Grau de parentesco
V5	Série cursada
V6	Bairro da residência
V7	Ocupação dos pais
V8	Estado civil dos pais
V9	Renda mensal da família
V10	Número de automóveis da família
V11	Número de moradores na residência
V12	Escolaridade dos pais
V13	Número de habilitados na residência
V14	Sexo da criança
V15	Idade da criança
V16	Meio de locomoção à escola
V17	Acompanhante da criança na ida até à escola
V18	Acompanhante da criança na volta da escola
V19	Tempo de deslocamento até a escola
V20	Destino final dos pais após deixar o filho na escola
V21	Bairro do destino final citado no item anterior
V22	Dinstaância entre a escola e o destino final dos pais
V23	Fator mais importante na escolha da escola
V24	Frequência com que a criança se desloca à pe até a escola
V25	Frequência com que a criança se desloca de bicicleta até a escola
V26	Frequência com que a criança se desloca ônibus até a escola
V27	A pé: 4 faixas de tráfego
V28	A pé: 4 sem faixa de pedestre pintada
V29	A pé: sem iluminação pública adequada
V30	A pé: locais com lotes vazios
V31	A pé: locais onde as quadras são compridas demais
V32	A pé: ruas com forte inclinação
V33	A pé: locais onde as calçadas estão estragadas
V34	A pé: locais onde o fluxo de veículos é pesado
V35	A pé: lugares onde não existe guarda de trânsito
V36	A pé: lugares com alto indice de assaltos
V37	A pé: se a casa é distante da escola para ir a pé
V38	Bicicleta: ruas com mais de 4 faixas de tráfego
V39	Bicicleta: ruas sem faixa de pedestre pintada
V40	Bicicleta: locais sem iluminação pública adequada
V41	Bicicleta: locais com lotes vazios

V42	Bicicleta: ruas com rampas
V43	Bicicleta: locais bastante movimentado com fluxo de veículos
V44	Bicicleta: locais onde não exista ciclovia ou ciclofaixa
V45	Bicicleta: existência de estacionamento de bicicleta na escola
V46	Bicicleta: se há assaltos a ciclistas na região
V47	Bicicleta: se a casa é distante da escola para ir de bicicleta
V48	Ônibus: pegar ônibus lotado
V49	Ônibus: distância até a parada de ônibus mais perto de casa
V50	Ônibus: distância até a parada de ônibus mais perto da escola
V51	Ônibus: se espera demais na parada de ônibus
V52	Ônibus: se é seguro andar de ônibus até a escola
V53	Ônibus: se é confortável andar de ônibus até a escola?]
V54	Ônibus: se as paradas de ônibus são pequenas
V55	Ônibus: se há informações sobre as linhas e horários de chegada e partida
V56	Ônibus: se há muitos terminais entre sua casa e a escola
V57	A pé: se o filho fosse mais velho(a)
V58	A pé: se o clima fosse melhor
V59	A pé: se o bairro fosse mais seguro
V60	A pé: escola fosse mais perto de casa
V61	A pé: se houvesse ruas menos movimentada
V62	A pé: se tivesse guarda de trânsito
V63	A pé:se as calçadas fossem conservadas
V64	A pé: se existissem faixas de pedestre no caminho
V65	A pé: se as ruas tivessem boa sinalização no caminho
V66	Bicicleta: Se o filho mais velho(a)
V67	Bicicleta: se o clima fosse melhor
V68	Bicicleta: se o bairro fosse mais seguro
V69	Bicicleta: se houvesse ciclovia no caminho
V70	Bicicleta: se houvesse boa sinalização p/ ciclista
V71	Bicicleta: Se a escola fosse próximo de casa
V72	Bicicleta: Se houvesse ruas menos movimentadas no caminho
V73	Önibus: se o filho mais velho(a)
V74	Önibus: as paradas fossem maiores e seguras
V75	Önibus: as paradas fossem mais perto de casa
V76	Önibus: as paradas fossem mais perto da escola
V77	Önibus: se houvessem mais linha de ônibus
V78	Önibus: se andar de ônibus fosse mais rápido
V79	Önibus:se os ônibus fossem pontuais
V80	Önibus: se os ônibus não fossem lotados
V81	Önibus: se os ônibus fossem novose limpos
V82	Önibus: se andar de ônibus fosse mais confortável
V83	Önibus: se andar de ônibus fosse mais seguro
V84 V85	Önibus :se os ônibus passassem nos horários das planilhas
V85 V86	Andar a pé :se os pais acham bom para a saúde dos seus filhos
	Andar de bicicleta: se os pais acham bom para a saúde dos seus filhos
V87	Pegar ônibus até a escola contribuia para diminuir o tráfego de carros na cidade

V88	Se os pais não se sentem à vontade de deixar seu filho ir a pé por receio de estranhos
V89	Se os pais não se sentem à vontade de deixar seu filho ir de bicicleta pelo trânsito
V90	Se os pais não se sentem à vontade de deixar seu filho pelo tempo de deslocamento
V91	Longa distância ate à escola para que meu filho se desloque a pé até ela
V92	Longa distância até a escola para que meu filho se desloque de bicicleta até ela
V93	Grande fluxo de carros no trajeto de seu filho por isso não se sente seguro
V94	Bairro da residência não é seguro o suficiente para meu filho ir a pé até a escola
V95	Bairro da residência não é seguro para meu filho ir de bicicleta até a escola
V96	Os ônibus não são seguros para que eu deixe meu filho pegá-lo para ir até a escola
V97	Levar o filho de carro até a escola é mais conveniente para os pais
V98	O clima quente dificulta o filho ir a pé até a escola
V99	O clima quente dificulta o filho ir de bicicleta até a escola
V100	Os pais não se preocupam em incentivar o filho a se deslocar a pé até a escola
V101	Os pais não se preocupam em incentivar o filho a se deslocar de bicicleta a escola
V102	Os pais não se preocupam em incentivar o filho a se deslocar de ônubus até a escola
V103	O filho não gosta de caminhar ou andar de bicicleta até a escola
V104	O filho não gosta de ir de ônibus até a escola
V105	Se na saída casa para ir a escola está muito cedo e escuro para o filho ir a escola
V106	Se na saída de casa para ir a escola está muito cedo e escuro para ir de bicicleta
V107	Se na saída de casa para ir a escola ainda está muito cedo/escuro para ir de ônibus
V108	Área do Setor
V109	Comprimento total das vias
V110	Densidade de vias
V111	Numero total de quadras
V112	Densidade de quadras
V113	Comprimento médio das quadras
V114	Número de interseções em cruz
V115	Número de interseções em T
V116	Número total de interseções
V117	Densidade de Interseções
V118	Conectividade
V119	Largura média das calçadas
V120	Linhas do transporte público que atendem
V121	Linhas do transporte público que margeiam
V122	Ciclovia
V123	Ciclorota
V124	Ciclofaixa