
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Unificação, Confluência e Tipos com Interseção para
Sistemas de Reescrita Nominal

Ana Cristina Rocha Oliveira Valverde

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Maurício Ayala Rincón

Coorientadora
Prof. Dr. Maribel Fernández

Brasília
2016

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Unificação, Confluência e Tipos com Interseção para
Sistemas de Reescrita Nominal

Ana Cristina Rocha Oliveira Valverde

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Maurício Ayala Rincón (Orientador) Prof. Dr. Maribel Fernández (Coorientadora)
CIC/UnB Informatics/KCL

Prof. Dr. Cesar Augusto Muñoz Prof. Dr. Christian Urban
NASA Langley Informatics/KCL

Prof. Dr. Daniel Lima Ventura Prof. Dr. Marcelo Finger
CIC/UFG DCC/USP

Prof. Dr. Flávio Leonardo Cavalcanti de Moura (Membro suplente)
CIC/UnB

Prof. Dr. Célia Ghedini Ralha
Coordenadora do Programa de Pós-graduação em Informática

Brasília, 15 de setembro de 2016

Dedicatória

Ao meu filho querido, que nem sequer tem nome ainda, mas já é muito amado.

iv

Agradecimentos

Primeiramente a Deus, que me deu forças e capacidade para concluir este trabalho.
Aos meus pais Assis e Tiana e ao meu irmão Bruno, pela alegria que me vem facilmente

na companhia de vocês.
Ao meu esposo e grande amor Ricardo, pela vida e encantos inesperados que encontrei

ao seu lado.
Aos meus companheiros de laboratório que se revelaram verdadeiros amigos: Ariane,

Thiago, José Luís, Lucas, Daniel e Washington.
Aos colegas que conheci em Londres e me fizeram sentir parte do grupo numa cidade

desconhecida. Particularmente, agradeço ao Elliot, que não somente foi um ótimo anfi-
trião, como também teve parte importante nesta tese através da disponibilização solícita
do seu próprio trabalho.

Aos meus orientadores Mauricio e Maribel, que sempre tiveram confiança em mim e
me guiaram com toda paciência.

Aos membros da banca examinadora, pela atenção dedicada a esse trabalho e pelas
recomendações feitas. Em especial, agradeço ao Daniel Ventura, que foi um verdadeiro
colaborador deste trabalho, dispensando horas de discussão e muitas viagens.

Ao Jamie Gabbay, pela oportunidade de trabalharmos juntos num trabalho que tam-
bém faz parte desta tese.

À CAPES, pelo apoio financeiro que nunca faltou durante este curso.

v

Acknowledgements

Firstly to God, who has given me strength and capacity to conclude this work.
To my parents Assis and Tiana and to my brother Bruno, for the joy that I easily feel

in your company.
To my husband and love Ricardo, for the unexpected life and delights that I have

found by your side.
To my lab peers, who have shown to be true friends: Ariane, Thiago, José Luís, Lucas,

Daniel and Washington.
To my colleagues who I have met in London and who made feel in a group, even in an

unfamiliar city. Particularly, I thank to Elliot, who was such an excellent host and whose
work was solicitously available, helping in an important part of this thesis.

To my advisors Mauricio and Maribel, who have always trusted me and have guided
me so patiently.

To the members of the jury, for your devoted attention to this work and for your
suggestions. Specially, I owe thanks to Daniel Ventura, who has largely contributed to
this work, spending several hours in discussion and a lot of travels.

To Jamie Gabbay, for the opportunity of working together in a paper which is part of
this thesis.

To CAPES, for the uninterrupted funding during this research.

vi

Resumo

Sistemas nominais são uma abordagem alternativa para o tratamento de variáveis em
sistemas computacionais, onde a reescrita de primeira ordem é generalizada através do
suporte para especificação de ligação de variáveis e de α-equivalência, fazendo uso do
conceito de freshness e da troca bijetiva de nomes (swapping). Teoremas bem conhecidos
em reescrita de primeira ordem podem ser adaptados a fim de serem adicionalmente vá-
lidos em reescrita nominal. Nesta tese, nós analisamos sob que condições a confluência
de sistemas de reescrita e o Critério dos Pares Críticos são válidos para a reescrita no-
minal, assim como para a reescrita nominal fechada (que é uma noção de reescrita mais
eficiente nesse contexto). As condições definidas aqui são de fácil checagem através de
um algoritmo de unificação nominal. A unificação nominal foi inicialmente estudada por
Urban, Pitts e Gabbay e formalizada por Urban no assistente de prova Isabelle/HOL.
Neste trabalho, são também apresentadas uma especificação nova de unificação nominal
na linguagem do PVS e uma formalização da sua terminação, correção e completude. Em
nossa especificação, ao invés de aplicar regras de simplificação a condições restritivas de
unificação e freshness, soluções para um problema de unificação são construídas recur-
sivamente através de uma especificação funcional direta, obtendo uma formalização que
é mais próxima a implementações algorítmicas. Esta formalização é o passo inicial com
vistas a ter mais resultados formalizados sobre reescrita nominal em PVS, onde um forte
arcabouço de sistemas de reescrita de termos já é disponibilizado. Ademais, um sistema
de tipos com interseção para termos nominais é apresentado. O sistema de tipos presente
possui a importante propriedade de redução do sujeito para uma noção especializada de
reescrita nominal tipada, o que significa que a tipabilidade no sistema é coerente com
execuções computacionais.

Palavras-chave: sintaxe nominal, reescrita, confluência, ligação de variáveis, formaliza-
ção, unificação, tipos com interseção

vii

Abstract

Nominal systems are an alternative approach for the treatment of variables in compu-
tational systems where first-order rewriting is generalised by providing support for the
specification of binding operators and α-equivalence using the notions of freshness and
name swapping. Famous theorems in the context of first-order rewriting can be adapted
for nominal rewriting as well. In this thesis, we analyse the conditions under which con-
fluence of orthogonal rewrite systems and the Critical Pair Criterion hold for nominal
rewriting as well as for closed nominal rewriting (an efficient notion of rewriting in this
context). The conditions we define are easy to check using a nominal unification algo-
rithm. Nominal unification was initially studied by Urban, Pitts and Gabbay and then
first formalised by Urban in the proof assistant Isabelle/HOL. In this work, we also present
a new specification of nominal unification in the language of PVS and a formalisation of
its termination, soundness and completeness. In our specification, instead of applying
simplification rules to unification and freshness constraints, we recursively build solutions
for the original problem through a straightforward functional specification, obtaining a
formalisation that is closer to algorithmic implementations. This formalisation is a first
step in order to have more formalised results about nominal rewriting in PVS, where a
huge background for term rewriting system is already available. Additionally, an inter-
section type system is presented for nominal terms. The present type system possesses
the important property of subject reduction for a specialised notion of typed nominal
rewriting, that means the soundness of typability under computational execution.

Keywords: nominal syntax, rewriting, confluence, binding, formalisation, unification,
intersection types

viii

Contents

1 Introduction 1
1.1 Related work . 7
1.2 Contributions . 10

2 Preliminaries 12
2.1 Nominal Syntax . 12
2.2 PVS . 16

3 Nominal Unification in PVS 23
3.1 Specification . 24

3.1.1 Freshness and α-equivalence . 26
3.2 A Direct Formalisation of Transitivity of α-equivalence 27
3.3 Minimal Freshness Contexts . 31
3.4 Nominal unification algorithm . 33

4 Ambiguity of Nominal Rules 40
4.1 Nominal Rewriting . 40
4.2 Confluence of Nominal Rewriting . 45

4.2.1 Critical Pair Criterion and Orthogonality 45
4.2.2 Criterion for α-stability . 48

4.3 Better Criteria for Confluence of Closed Rewriting 49

5 Nominal Essential Intersection Types 56
5.1 Types, ordering and operations . 56
5.2 Type Inference System and Basic Properties 63
5.3 Typed Matching and Typed Rewrite Relation 69

5.3.1 Subject Reduction . 76

6 Conclusions and Future Work 78

References 84

ix

Acronyms

ASP Abstract Skeleton Preserving.

BCD Barendregt−Coppo−Dezani-Ciancaglini Intersection Type.

CP critical pair.

NRS Nominal Rewriting System.

PVS Prototype Verification System.

TCC Type Check Condition.

TRS Term Rewriting System.

x

Chapter 1

Introduction

Introducing variable binders in a language that works with names requires some mecha-
nism to deal with α-equivalence, that is the invariance of objects modulo the renaming
of bound variables. From logic, the existential and universal quantifiers are examples of
constructors that need the binding engine to work. For instance, it must be possible to
derive the equivalence between the formulas ∃x : x > 1 and ∃y : y > 1, despite the
syntactical differences. Nominal theories treat binders in a way that is closer to informal
practice, using variable names (or atoms), atom-permutations to proceed with renamings
and freshness (constraints). This approach was presented in [Gabbay and Pitts, 1999],
where the Fraenkel-Mostowski permutation model of set theory with atoms (FM-sets) is
indicated as “the semantic basis of meta-logics for specifying and reasoning about formal
systems involving name binding, α-conversion,” etc.

First-order rewriting systems and the λ-calculus provide two useful notions of terms
and reduction. However, both have limitations, which motivated extensions such as
higher-order rewriting systems (see [Klop et al., 1993, Mayr and Nipkow, 1998]). Explicit
substitution calculi are associated with higher-order rewriting systems, where substitu-
tions are manipulated explicitly, and some of them use the de Bruijn indices to imple-
ment the substitution operation together with α-conversion in a first-order setting (see
[Stehr, 2000]). In Nominal Rewriting Systems (NRS), we can specify capture-avoiding
substitutions based on first-order techniques without the need to manage indices, since
names and α-equivalence are primitive notions [Fernández and Gabbay, 2007].

Nominal rewriting generalises first-order rewriting by providing support for the spec-
ification of languages with binding operators. In nominal syntax, there are two kinds
of variables: atoms, which are used to represent object-level variables and can be ab-
stracted but not be substituted, and meta-variables, called simply variables or un-
knowns, which can be substituted but cannot be abstracted. Substitution of a vari-
able by a term is closer to first-order substitution, where variables act as holes that

1

are supposed to be filled without worrying to adapt any part of the term, what
can enable capture of atoms (unlike higher-order theories, where substitution is non-
capturing). Another feature is that β-reduction is not a primitive notion in nomi-
nal rewriting, in contrast to the higher-order and explicit substitutions approaches (cf.
[Huet, 1975, Dowek et al., 2000, Ayala-Rincón and Kamareddine, 2001]).

In the programming paradigm of rewriting, confluence and termination are compu-
tational properties that have a special role. Termination has to do with an algorithmic
behavior of a program, i.e., the guarantee of a final answer for any input. Confluence refers
to determinism of programs in the sense that, given an input, it does not matter the paths
the program takes, it is always possible to have a common computation, even when the
program does not terminate. Together, they are required properties of rewriting systems
to decide equality modulo a related equational theory. This theme is well investigated in
first-order systems [Baader and Nipkow, 1998] and the same result is achieved for closed
systems in the context of nominal setting [Fernández and Gabbay, 2010]. Both properties
are not always required in every rewriting system but, in general, one wants to be able
to decide if a system is confluent/terminating or not. Unfortunately, such properties are
undecidable in general; however, there are some criteria to guarantee them.

Such criteria for confluence of rewriting theories were first investigated in the context of
the λ-calculus and abstract rewriting theories in works such as [Newman, 1942], in which
the famous Newman’s Lemma was stated: confluence and local confluence coincide for
terminating rewriting theories. Nowadays this is seen as a combinatorial property of ab-
stract rewriting theories that strictly depends on noetherianity, that is, well-foundedness
of the rewriting relation [Huet, 1980].

In the context of Term Rewriting Systems (TRS), the Critical Pair Lemma, which
is the kernel of the famous Knuth-Bendix completion procedure, guarantees local con-
fluence of term rewriting theories [Knuth and Bendix, 1970], but to get confluence, in
general, one needs to prove termination to the system. The most famous sufficient
condition for confluence without termination, giving also rise to a programming dis-
cipline, is orthogonality. Essentially, orthogonality avoids indeterminism through two
easily verifiable syntactic constraints on the rewrite rules: left-linearity, that constrains
each variable occurring in the left-hand side of each rule to appear only once, and non-
ambiguity, that constrains left-hand sides of rules to have no overlaps (except for triv-
ial ones, at variable positions or between a rule and its copy at the root position).
With these syntactic restrictions confluence of orthogonal rewriting theories is guaran-
teed [Rosen, 1973]. This result has been formalised for TRSs in a couple of proof assistants
[Rocha-Oliveira et al., 2016, Thiemann, 2013].

2

For nominal rewriting theories, the Critical Pair Lemma and confluence of orthog-
onal theories were first investigated in [Fernández and Gabbay, 2007], where it was
shown that the above-mentioned results extend to the class of uniform nominal rewrit-
ing theories, that is, theories where rules do not generate new atoms. More precisely,
in [Fernández and Gabbay, 2007] it is shown that for the class of uniform theories, if all
non-trivial critical pairs are joinable, then the theory is locally confluent, and therefore
confluent if it is also terminating (by Newman’s Lemma). Another sufficient condition
for confluence of uniform theories is orthogonality: if the rules are left-linear and have
no non-trivial critical pairs then the theory is confluent [Fernández and Gabbay, 2007].
As for first-order rewrite theories, trivial critical pairs are defined by overlaps at variable
positions, or overlaps at the root between a rule and its copy. This way permuted variants
of the same rule are not allowed to overlap in an orthogonal system. Both of these criteria
rely on checking all non-trivial critical pairs. It is important to check also the overlaps at
the root between a rule and its permuted variants, because if we miss those overlaps the
theory might not be confluent (as it will be shown in Chapter 4).

In [Suzuki et al., 2015], the authors relax the orthogonality condition given
in [Fernández and Gabbay, 2007] to permit overlaps at the root between a rule and its
permuted copies, but only for uniform rules that satisfy an additional condition, called
α-stability. This flexibility made the theorem of confluence for orthogonal systems more
expressive, since it is possible to have orthogonal rules with bindings.

In this thesis, we present new criteria for (local) confluence of NRSs. Firstly, we
show that also the conditions in the Critical Pair Lemma can be weakened if rules are
uniform and α-stable: if all the non-trivial critical pairs are joinable, except possibly
those caused by overlaps at the root between a rule and its permuted variants, then
the theory is locally confluent. This condition was first explored in a previous paper
developed during this research in [Ayala-Rincón et al., 2016a], but it was concomitantly
studied in [Suzuki et al., 2016]. We develop it further by giving a new sufficient condition
for α-stability, which is easy to check as it relies simply on nominal matching.

In addition, we give new stronger criteria for closed nominal rewriting: it is sufficient
to check the generated overlaps using just one variant of each rule. The main advantage
of working with closed rewriting is that it does not require the equivariant matching
[Aoto and Kikuchi, 2016], as the standard nominal rewriting, which is exponential in time
over the number of atoms occurring in rules. Instead, it uses nominal matching without
equivariance, which can be solved in linear time on the size of the matching problem
[Calvès and Fernández, 2010], making the rewrite step much more efficient.

Matching is actually a particular case of the equality problem of unification. Nomi-
nal unification is a problem that has been investigated since [Urban et al., 2004], where

3

a solution, whenever existent, is a pair formed by a set of freshness constraints with
a first-order substitution and the unification algorithm provided is supposed to solve
equality problems modulo α-equivalence. This first algorithm is exponential in time
on the size of the problem , i.e., size of terms and freshness constraints, but in
[Calvès, 2010, Levy and Villaret, 2010], this problem has been proved to be at most
quadratic. Translations between nominal unification problems and higher-order pattern
unification problems are given in [Cheney, 2005, Levy and Villaret, 2012].

There are also variations of the nominal syntax of expressions, as explored in
[Schmidt-Schauss et al., 2016], what implies into a more complex analysis of the nom-
inal unification problem; in that paper, it is proved to be NP-complete for a nominal
grammar enhanced with recursive let.

In this thesis, we also present a specification of a nominal unification algorithm in the
proof assistant Prototype Verification System (PVS) [Ayala-Rincón et al., 2016b] and the
formalisation of its soundness and completeness. The decision to do it was motivated by
the establishment of a nominal theory in PVS, which has a large library on TRSs, including
the formalisation of the correctness of the Robinson’s first-order unification algorithm
[Avelar et al., 2014]. In rewriting, syntactic unification is a resource used, for instance, to
identify overlaps between rewrite rules while matching, a restriction of unification, is used
to perform rewrite steps, as mentioned before. That is why unification was the starting
point to develop a nominal theory in PVS.

The following expressions contain X, Y as variables and i, k as atoms and can illustrate
the way we are supposed to treat a nominal unification problem. The name k is bound
in the first expression and i is bound in the second one by the sum operator:

7∑
k=0

5∑
i=0

(i−X)i and
7∑
i=0

5∑
k=0

(X − Y)k.

They admit a most general unifier with solution [X 7→ k][Y 7→ i] according to the al-
gorithm in [Urban et al., 2004], that inspired our specification. Note that i and k are
captured. In a higher-order unification approach, this solution would not be accepted
because bound variable capture is forbidden.

On the other hand, the unification problem with the expressions

5∑
i=0

(i−X)i and
5∑

k=0
(X − Y)k

has no solution in the nominal setting. One could argue that a solution could be obtained
instantiating the terms with the substitution [X 7→ i][Y 7→ i] and renaming k as i. But this
is not possible since i should be a “fresh” name in the scope of the second sum in order

4

to proceed with this renaming, and the chosen substitution contradicts this condition.
In other words, the meta-variable X should be instantiated uniformly throughout the
problem.

The style of our specification is close to the functional presentations of Robinson’s
first-order unification algorithm, and the formalisation avoids the use of intermediate
equivalence relations, obtaining in a straightforward manner transitivity and symmetry
of the nominal α-equivalence relation. Indeed, in [Urban, 2010], a “weak equivalence” is
used in order to simplify the proof of transitivity for the standard nominal α-equivalence.
However, in this thesis, we present an even simpler proof, avoiding formalisations of
properties of this weak intermediate relation. This is obtained following the analytic
scheme of proof shown in [Fernández and Gabbay, 2007].

The nominal unification algorithm given in Isabelle/HOL in [Urban, 2004] is essentially
specified as the transformation rule system presented in [Urban et al., 2004]. These rules
transform unification problems with their associated freshness contexts into simpler ones.
This approach is very elegant and allows a higher level of abstraction that simplifies the
analysis of computational properties such as termination and uniqueness of solutions, but
it is not so useful in implementations due to its inherent non-determinism (regarding the
application of the transformation rules).

Here we present a new nominal unification algorithm that has
only two nominal terms (but no freshness context) as inputs, as
in [Calvès and Fernández, 2010, Levy and Villaret, 2010]. However, the algorithms
presented in [Calvès and Fernández, 2010, Levy and Villaret, 2010] focus on efficiency,
whereas our goal is to formalise the proof of correctness by specifying the algorithm
in PVS as a recursive function “unify” that works directly on terms and deals with
freshness contexts separately. Although the function “unify” does not carry freshness
contexts, it builds them at the end of the execution together with the substitution
solution. The freshness problems arisen during the recursive computation are solved
separately due to the independence of solutions for freshness and without generating
extra fresh atoms. This differs from the treatment given in [Levy and Villaret, 2010]
where freshness constraints, as well as suspensions, are encoded as equations, that was
proved equivalent to the treatment in [Calvès and Fernández, 2010] in [Calvès, 2013].
The main results regarding the nominal unification in PVS are also available in
[Ayala-Rincón et al., 2016b].

Additionally, an important computational feature that has been investigated in nom-
inal theories are type systems. At first, type theory was the answer to the problematic
cases of paradoxes in set theory. In [Russell, 1908], it is identified the problem of self-
reference in all known paradoxes and explicitly introduced the type theory in order to

5

eliminate them. In Computer Science, type systems are used to detect which programs
are safe to be executed.

Types can be given in two styles: à la Church, where terms are explicitly decorated
with types and only well-typed terms are allowed; and à la Curry, where terms from the
type free syntax need a type inference to be classified as typable.In this thesis, we have
chosen to present a type system in the second style due to its higher level of expressivity
with respect to the first one. Indeed, in a type system à la Curry, we can consider terms
that are not typable, but are valid terms in the grammar.

The Simple Type System for the λ-calculus is well investigated [Hindley, 2002], but
despite its powerfulness and convenience, it has some drawbacks. It is known that typable
terms in this system are strongly normalisable for βη-reduction. However, the opposite
is not true: there are terms that are strongly normalisable but not typable in the system.
For example, the term λx.x x that represents the self application function is in β-normal
form and it has no type in the type system of [Hindley, 2002].

An intersection constructor was introduced to extend the Simple Type System
in [Coppo and Dezani-Ciancaglini, 1978] and further improved in [Coppo et al., 1981,
Barendregt et al., 1983], the famous Barendregt−Coppo−Dezani-Ciancaglini Intersection
Type System (BCD). Intersection types provide a finitary polymorphism to terms and
give a characterisation of terms that cannot originate infinite paths of reduction, i.e., βη-
reduction is terminating in the class of terms typable with ω-free typings (ω is universal
type) and, conversely, strongly normalisable terms are typable with ω-free typings. More-
over, there are interesting non-strongly normalisable terms that are typable with a type
not equivalent to ω: the solvable terms, which are head-normalisable, such as the fixed
point combinator λ-term λf.(λx.f (x x)) (λx.f (x x)).

In [van Bakel, 1995], a restriction of the BCD Type System [Barendregt et al., 1983]
called Essential Intersection Type System was presented. It preserves the main properties
of the BCD system, such as subject reduction for η-reduction, subject conversion of β-
reduction, characterisation of head/strongly normalisable terms and the principal pair
property. The Essential system is also an extension of the previous Strict Type System
of [van Bakel, 1992] because typings are not closed under η-reduction in the latter. The
main advantage of the Essential system regarding the BCD one is the reduced number of
equivalent types to each term.

Some differences may be noticed in the nominal framework because substitutions are
first-order, what means they allow capture of names. In the typed λ-calculus à la Curry,
the well-known substitution lemma ensures that Γ ` t[x 7→ s] : σ whenever Γ, x : γ ` t : σ
and Γ ` s : γ hold. This can be proved in this context because no free variable, atom
in a nominal syntax, of s should be captured in this substitution action. In a nominal

6

system, one must be very carefully looking not only at this outermost environment Γ, but
also at the type annotations in the leaves of the corresponding type derivation where the
nominal variables are typed, because the free atoms that occur in the instance of such
variables are possibly captured.

This thesis then presents an Essential Intersection Type System for nominal terms,
which overcomes the specificities of the nominal framework as described in the previous
paragraph, providing results of preservation of typings for α-equivalent terms and subject
reduction for a notion of typed rewriting in uniform rewrite systems. Throughout the
Chapter 5, examples are given to show the necessity of the conditions added in a typed
matching, in the typed rewriting and, finally, in the theorem of subject reduction. The
main ideas on the restrictions over the nominal typed rewriting were based on the pre-
sentation of the polymorphic nominal type system in [Fairweather and Fernández, 2016].

Objectives: the main objective of this thesis is the investigation of equational and
computational properties on the nominal setting. More specifically, we could achieve
results on the formalisation of properties about nominal unification, new theoretical results
on confluence of NRSs (not formalised yet) and the development of an intersection type
system for nominal terms and nominal rewriting.

1.1 Related work

There are formalisations of nominal theories in other proof assistants. The most famous
formalisation has been implemented in Isabelle/HOL [Urban, 2008], where α-equivalence
between terms is effectively obtained by representing terms as “abstraction functions”.
Thus, [Urban, 2008] presents some basic conditions that are sufficient to guarantee the
equivalence between two representations of terms. Then, an induction principle is pre-
sented, to obtain proofs by induction over abstracted terms in a more natural way. For
instance, the well-known Substitution Lemma in the context of the λ-calculus was for-
malised using these techniques.

A similar work was done in Coq [Aydemir et al., 2007], but bound variables were
encoded by using de Bruijn indices and the terms were defined as having the type of locally
nameless terms. An induction principle was implemented in order to prove properties
about well-formed terms without mentioning indices. [Copello et al., 2016] also presents
an α-structural induction principle in Agda and proves the Substitution Lemma using such
an inductive scheme, but it criticises the use of higher-order features in [Urban, 2008] and
the indices in [Aydemir et al., 2007] to represent bindings. Instead, the authors claim to

7

use a method similar to the Barandregt’s Variable Convention, where a bound name is
suposed to be chosen different from a given list of names.

Another formalisation in Isabelle/HOL is available in [Urban, 2004], to deal with nom-
inal unification following [Urban et al., 2004]. This formalisation is closer to ours in the
sense that α-equivalence is defined under some side-conditions, namely freshness con-
ditions. The properties formalised in this system include the fact that the specified α-
equivalence is indeed an equivalence relation, termination and soundness of the unification
algorithm and the characterisation of normal forms generated by the algorithm.

In [Urban, 2010], the proof of transitivity of the α-equivalence relation is com-
pared to the ones presented in [Urban, 2004, Fernández and Gabbay, 2007] and
[Kumar and Norrish, 2010]. The proof in the latter was then considered the best one be-
cause it avoids a more complex inductive scheme on the size of terms. However, it requires
the implementation of a “weak-equivalence” relation as a workaround. In the formalisation
presented here, we follow auxiliary lemmas developed in [Fernández and Gabbay, 2007],
but with a simpler proof of transitivity by induction on the structure of terms obtain-
ing directly the result that the specified α-equivalence relation is indeed an equivalence
relation.

Since the introduction of nominal unification and other features of nominal settings,
some implementations have used them to enrich pre-existing programming languages,
such as the logic tool of α-Prolog [Cheney and Urban, 2004], Cαml [Pottier, 2006] and
FreshML [Shinwell et al., 2003], which aim for simplifying programming with binders and
for eliminating the errors that may arise when using α-convertible expressions.

Concerning orthogonality, there are two notions in previous works for nominal rewrit-
ing. In [Fernández and Gabbay, 2007], orthogonality was left-linearity plus no non-trivial
critical pairs. This was proved to be a sufficient condition for confluence of uniform
rewrite rules. The notion of orthogonality was relaxed in [Suzuki et al., 2015] to al-
low overlaps at the root between permuted variants of rules. This weaker notion does
not ensure confluence of uniform rules. If we also have α-stability then confluence is
guaranteed [Suzuki et al., 2015]. A version of the Critical Pair Lemma was presented in
[Fernández and Gabbay, 2007] too, where joinability of the non-trivial critical pairs was
sufficient to prove local confluence of uniform NRSs. More recently, [Suzuki et al., 2016]
extended the condition of α-stability for the Critical Pair Lemma, in order to eliminate the
necessity to verify the joinability of a critical pair generated by a rule with its permuted
version. The same result was achieved by us in [Ayala-Rincón et al., 2016a].

A sufficient condition for α-stability was given in [Suzuki et al., 2015], called “abstract
skeleton preserving” (ASP). This is a strong restriction: it only allows identity permuta-
tions to be suspended on variables, and it requires the use of different atoms in nested

8

abstractions. Here we show that closedness, which does not impose such restrictions and
can be checked simply by solving a nominal matching problem, is a sufficient condition
for α-stability. In addition, for closed rewriting the criteria for confluence can be simpli-
fied, by checking only overlaps of freshened rules, i.e., with newly generated names with
respect to the original rules and to the terms that are rewritten. Closedness and the
ASP criterion are complementary in the sense that none of them implies the other. Our
work in [Ayala-Rincón et al., 2016a] differs from [Suzuki et al., 2016] by the presentation
of closedness as a condition for α-stability and by the treatment of the theorem of con-
fluence of orthogonal systems and the Critical Pair Lemma for closed rewriting, where
one does not need to worry about the overlap of permuted versions of rules. Besides,
α-stability and uniformity come for free with closed rewriting, so that the mentioned
theorems spare such conditions as premises.

With respect to type systems, other works have developed systems outside the context
of the λ-calculus. In [van Bakel and Fernández, 1997], there is an Essential Intersection
Type System for Curryfied TRSs. That work was based on the system presented in
[van Bakel, 1995]. With a few restrictions on the rewrite rules, the authors were able to
prove subject reduction for such systems. Additionally, they provided some criteria for
the rules under which typability without ω implies strong normalisation. Despite inter-
section types are studied since the late 70’s, a challenge is presented whenever one tries
to move this kind of types into another calculus. For example, [Lengrand et al., 2004]
proves the characterisation of strongly normalisable terms with intersection types in a
composition-free calculus of explicit substitutions. In [Ventura et al., 2015], an intersec-
tion type system is presented for a few calculi written with de Bruijn indices and it shows
subject reduction for all those calculi of explicit substitution.

In nominal context, [Fernández and Gabbay, 2006] defines a rank 1 polymorphic type
system that explores, for the first time, the peculiarities of nominal with a syntax-directed
type inference for nominal terms. A principal type function is presented that applies to
a term with a type environment and a freshness context and returns the most general
type for the given parameters. They were able to present a proof of subject reduction
for typable rules with a specialised notion of rewrite step involving types. They already
mentioned the intention of developing an intersection type system for nominal systems.

The thesis in [Fairweather, 2014] follows the presentation of
[Fernández and Gabbay, 2006] and defines a simple type system à la Church, where
α-equivalence and freshness need to be redefined to consider types, and other systems à la
Curry, which are a simple type system, a polymorphic type system and a dependent type
system. For this last system, another version of terms is given, where atom substitution
is a primitive notion. The author has published a preliminar version of the polymorphic

9

system with Fernández and Gabbay in [Fairweather et al., 2011] and a posterior version
of the dependent system with Fernández, Szasz and Tasistro in [Fairweather et al., 2015].
Typed nominal rewriting and nominal algebra, both in the Church and Curry styles, are
presented in [Fairweather and Fernández, 2016], where conditions for subject reduction
with dynamically and statically typed rewrite rules are given. The latest improves part
of the work presented in [Fairweather, 2014].

Previous works like [Urban et al., 2004] present a sort system while defining nominal
terms, but with the view to guarantee some level of well-formedness, instead of exploring
the semantics provided by type systems. There, atoms are allowed to be typed only with
atom sorts and only well sorted permutations are built (swappings must occur between
atoms of the same sort). [Pitts, 2003] does a similar treatment regarding sorts, but over
elements of nominal sets instead of a fixed grammar of nominal terms.

In [Cheney, 2009], a simple type system is presented for nominal abstract syntax,
where the nominal semantics is added to the λ-calculus, with βη-reduction shown as a
primitive notion. Using the same approach, [Cheney, 2012] and [Pitts et al., 2015] pre-
sented dependent type systems, where a dependent name-abstraction type constructor is
used in the syntax of types.

To the best of our knowledge, our type system is the first one that works with
intersections in the context of nominal terms. It is based on [van Bakel, 1995,
van Bakel and Fernández, 1997] with respect to the intersection type features, and on
[Fairweather, 2014, Fairweather and Fernández, 2016] regarding the nominal restrictions
to obtain properties such as subject reduction.

1.2 Contributions

Summarising, the main contributions of this thesis are:

1. We specify the first basic nominal PVS theory where it is possible to find the notions
of atoms, permutations, nominal terms, freshness, α-equivalence, substitutions and
nominal unification.

2. We review and formalise the proofs of transitivity and symmetry of the α-
equivalence relation, comparing to the formalisation in [Urban, 2004] and the proofs
in [Urban, 2010]. See Section 3.2.

3. We show a functional presentation of the nominal unification algorithm similar to
the Robinson’s first-order unification algorithm based on the transformation rules in
[Urban et al., 2004] and we formalise the termination, soundness and completeness
of this algorithm in PVS. See Section 3.4.

10

4. We relax the conditions in the Critical Pair Lemma for uniform rules that are α-
stable: it is not necessary to consider critical pairs generated by overlaps at the root
between a rule and a permuted variant. See Subsection 4.2.1.1

5. We show that closedness is a sufficient condition for α-stability. Since closedness
is easy to check by simply solving a nominal matching problem, we get an easy to
check condition for α-stability. See Subsection 4.2.2.

6. We show that for closed rewriting, the criteria can be relaxed even more: it is
sufficient to check overlaps by using one freshened version of each rule; overlaps
between permuted variants of rules (at the root or otherwise) do not need to be
considered at all. See Section 4.3.

7. We present an Essential Nominal Intersection Type System for nominal terms with
the associated type operations such that typings are preserved for α-equivalent
terms. See Section 5.2.

8. We present the notions of typed nominal matching and typed rewriting relation
based on [Fairweather, 2014] with the proper adaptations to the intersection type
system and the type operations introduced here. For this notion of rewriting, subject
reduction holds for uniform rewrite systems. See Section 5.3.

1This result was independently obtained by T. Suzuki, K. Kikuchi, T. Aoto and Y. Toyama, “On
confluence of nominal rewriting systems”, 16th JSSST Workshop on Programming and Programming
Languages, 2014, in Japanese.

11

Chapter 2

Preliminaries

This chapter presents in Section 2.1 the basic notions that will be used in the context
of the nominal framework as well as the necessary background about PVS in order to
understand the development of the theory of nominal unification in PVS in Section 2.2.

2.1 Nominal Syntax

We fix disjoint countably infinite collections of atoms (or names), unknowns (or vari-
ables), and term-formers (or function symbols). We write A for the set of atoms and
V for the set of variables; a, b, c, . . . will range over distinct atoms. X, Y, Z, . . . will range
over distinct unknowns. f, g, . . . will range over distinct term-formers. We assume that to
each f is associated an arity n ≥ 0. A signature Σ is a set of term-formers with their
arities.

Definition 1 A swapping (a b) is a bijection from A into A that exchanges a
and b and fixes any other atom. Permutations are also bijections of the form
π : A → A, which change a finite number of atoms and that are represented as
lists of swappings. The notation π ◦ π′ is used for the functional composition of
permutations, so (π ◦ π′)(a) = π(π′(a)). Then, the action of a permutation over
atoms is recursively defined as:

id(c) = c , where id is the null list;

((a b) ◦ π)(c) =


a, if π(c) = b;
b, if π(c) = a;
π(c), otherwise.

The inverse of π is the reverse list of swappings and it is denoted by π−1.

12

Definition 2 The set T (Σ,A,V) of (nominal) terms is recursively defined by:

t ::= a | π ·X | [a]t | f(t1, . . . , tn) where n is the arity of f.

Call π ·X a suspension and [a]t an (atom-)abstraction; it represents ‘x.e’ or ‘x.φ’
in expressions like ‘λx.e’ or ‘∀x.φ’.

Next, it is presented a different grammar for nominal terms. It will be used in Chap-
ter 3 for terms as specified in PVS.

Definition 3 The set TPV S(Σ,A,V) of nominal terms is generated by the following
grammar:

t ::= ā | π ·X | () | (t1, t2) | [a]t | f t ,

where ā is an atomic term, () is the unit or empty tuple, (t1, t2) is a pair of terms,
and f t is an application.

This distinct presentation of terms follows the one taken in previous works such as
[Fernández and Gabbay, 2007, Urban et al., 2004], for instance, and it was used to en-
code nominal terms while creating a PVS theory for nominal. Notice that, in the set
TPV S(Σ,A,V), we distinguish between the atom a and the term ā that consists of the
atom a (compare with the constructor at in the code of the PVS data structure of terms
presented in Chapter 3). Also, the function application works for symbols with arity one.
To represent a greater arity, one can use pairs to encode tuples with any number of argu-
ments. For instance, if the symbol f is supposed to have arity 3, then we can describe the
term f (t1, (t2, t3)) using Definition 3. More details about the syntax of TPV S(Σ,A,V) will
be explored in Chapter 3; wherever else, terms are supposed to be in the set T (Σ,A,V).

Actions of permutations can be homomorphically extended over terms. This means
that permutations only change atoms and are accumulated into suspensions. A precise
definition is given below.

Definition 4 Define π • t a permutation action by:

π • a = π(a) π • (π′·X) = (π ◦ π′) ·X
π • [a]t = [π(a)](π • t) π • f(t1, . . . , tn) = f(π • t1, . . . , π • tn)

Example 2.1. Let ∏ and + (with infixed notation) be ternary and binary symbols of a
signature Σ, respectively. Consider ∏Z

i=Y X the syntactic sugar of ∏([i]X, Y, Z) and the

13

permutation (mk) ◦ (k n) with its inverse (k n) ◦ (mk). Next, one can observe the action
of both permutations over the term ∏k

i=m(i+X):

(mk) ◦ (k n) •
n∏

k=m
(k +X) =

m∏
n=k

(n+ (mk) ◦ (k n) ·X)

(k n) ◦ (mk) •
n∏

k=m
(k +X) =

k∏
m=n

(m+ (k n) ◦ (mk) ·X).

One important observation is that the variables in suspensions work as meta-variables,
where a substitution that replaces unknowns by terms is a primitive notion. With this
in mind, it is reasonable that nominal variables are not ‘abstractable’. The denomination
‘suspension’ for π · X has to do with the fact that the permutation π cannot indeed be
applied to X until the instance of this variable is known; so it is suspended.

Definition 5 Define πt the meta-action of π on t by:

πa = π(a) π(π′ ·X) = ππ′ ·X π([a]t) = [π(a)]πt πf(t1, . . . , tn) = f(πt1, . . . , πtn),

where πid = id and π((a b) ◦ π′) = (π(a) π(b)) ◦ ππ′.
Extend the meta-action to contexts by π∇ = {π(a)#X| a#X ∈ ∇}.

The meta-action of permutations affects only atoms in terms (it does not suspend on
variables, in contrast to the permutation action of Definition 4).

Example 2.2. Consider the same signature of Example 2.1. Notice that the permutations
do not suspend on unknowns when applying the meta-action of them.

(mk)◦(k n)
n∏

k=m
(k +X) =

m∏
n=k

(n+X) (k n)◦(mk)
n∏

k=m
(k +X) =

k∏
m=n

(m+X).

Definition 6 A substitution on unknowns, ranged over θ, ϑ, µ, . . ., is a func-
tion from unknowns to terms with finite domain in the sense that they change only
a finite set of unknowns. Each substitution θ is represented as a list of nuclear
substitutions, which are pairs of the form [X 7→ s], and their action over terms is
defined as:

a[X 7→ s] = a (π ·X)[X 7→ s] = π • s
([a]t)[X 7→ s] = [a](t[X 7→ s]) (π · Y)[X 7→ s] = π · Y

f(t1, . . . , tn)[X 7→ s] = f(t1[X 7→ s], . . . , tn[X 7→ s])

14

We write id for the substitution when the set of changed unknowns is empty (it
will always be clear whether we mean ‘id the identity substitution’ or ‘id the identity
permutation’). The juxtaposition of substitutions θθ′ denotes the composition of the
respective functions, mapping each X into (Xθ)θ′. So, the action of θ over terms is
defined inductively by:

t id = t t (θ[X 7→ s]) = (t θ)[X 7→ s].

Remark 2.3. This notion of substitution is different from the simultaneous application
of nuclear substitutions; instead, we apply the nuclear substitutions one by one and allow
to have non-idempotent substitutions. This approach is closer to triangular substitutions
as explored in [Kumar and Norrish, 2010], with the intention to be more space efficient.

∇ ` a#b
(#ab)

π−1(a)#X ∈ ∇
∇ ` a#π ·X

(#X)
∇ ` a#[a]s

(#[a])

∇ ` a#s1 . . . ∇ ` a#sn
∇ ` a#f(s1, . . . , sn)

(#f)
∇ ` a#s
∇ ` a#[b]s

(#[b])

∇ ` a ≈α a
(≈αa)

ds(π, π′)#X ⊆ ∇
∇ ` π ·X ≈α π′ ·X

(≈αX)

∇ ` s ≈α t
∇ ` [a]s ≈α [a]t

(≈α[a])
∇ ` s ≈α (a b) • t ∇ ` a#t

∇ ` [a]s ≈α [b]t
(≈α[b])

∇ ` s1 ≈α t1 . . . ∇ ` sn ≈α tn
∇ ` f(s1, . . . , sn) ≈α f(t1, . . . , tn)

(≈αf)

Table 2.1: Freshness and α-equality

Definition 7 A freshness (constraint) is a pair a#t of an atom a and a term
t. We call a freshness of the form a#X primitive, and a finite set of primitive
freshnesses a freshness context. ∆ and ∇ will range over freshness contexts.

We denote by ∇θ the set {a#θ(X)| a#X ∈ ∇} of freshness constraints.
A freshness judgement is a pair ∆ ` a#t of a freshness context and a freshness

constraint. An α-equivalence judgement is a tuple ∆ ` s ≈α t of a freshness
context and two terms. The derivable freshness and α-equivalence judgements are
obtained by the rules in Table 2.1, where ds(π, π′) = {a ∈ A | π(a) 6= π′(a)}. For A

15

a finite set of atoms, A#X denotes the freshness context {a#X | a ∈ A}. We call
ds(π, π′) the difference set of permutations π and π′.

Definition 8 The set Pos(t) of positions of a term t is defined below. Note that
ε is the only position in atoms and variables.

ε ∈ Pos(t)
(pε)

p ∈ Pos(t)
1 · p ∈ Pos([a]t)

(p[a])
p ∈ Pos(ti) (1 ≤ i ≤ n)

i · p ∈ Pos(f(t1, . . . , ti, . . . , tn))
(pf)

The notation t|p represents the subterm of t at position p, which is defined by:

t|ε = t [a]t|1·p = t|p f(t1, . . . , ti, . . . , tn)|i·p = ti|p (1 ≤ i ≤ n)

If p ∈ Pos(s), then s[p←t] denotes the replacement of s|p by t in s.

Definition 9 The function atms is used to compute the atoms in permutations
and in terms. The set atms(π) is defined by:

atms(id) = ∅ atms((a b) ◦ π) = {a, b} ∪ atms(π).

The notations atms(t) and unkn(t) will be used to represent the set of atoms and
unknowns in a term t, respectively. They are defined by:

atms(a) = {a} atms(π ·X) = atms(π)
atms([a]t) = atms(t) ∪ {a} atms(f(t1, . . . , tn)) = ⋃

i atms(ti)

unkn(a) = ∅ unkn(π ·X) = {X}
unkn([a]t) = unkn(t) unkn(f(t1, . . . , tn)) = ⋃

i unkn(ti)

2.2 PVS

The Prototype Verification System (PVS) [Owre and Shankar, 1999, Shankar et al., 2001]
is a proof assistant based on higher-order logic, i.e., that allows to specify predicates and
fuctions over functions or relations. It is designed to specify and verify properties of
programs. The functional specification of PVS, based on LISP, provides a code that is
more readable and logically meaningful than in imperative languages. The type system

16

presented is a simple type system extended with subtypes (analogous to subset relation)
and dependent types; the specification is grouped in theories, which can be parameterised,
giving also some level of polymorphism.

The proof engine is used to formalise the lemmas specified by PVS users and also
to complete the type check by proving the proof obligations of Type Check Conditions
(TCCs), that are automatically generated, but not always automatically proven. This
includes proofs of termination with respect to recursive definitions, that is, the user pro-
vides a measure that decreases in each recursive call and a TCC is generated to complete
the type check.

The PVS proof theory is based on the sequent calculus of Gentzen. A sequent is of the
form Σ `Γ Λ, where Γ is the context that contains the information of types and Σ and Λ
are the antecedent and consequent sets of formulas, respectively. One must understand a
sequent as the conjunction of the formulas in the antecedent implying the disjunction of
the formulas in the consequent.

In this section, from now on, the PVS theory TRS [Avelar et al., 2014,
Galdino and Ayala-Rincón, 2009] will be used to illustrate the PVS rules and some data
structure. This theory includes the subtheory orthogonality developed in a previous
work and presented in [Rocha-Oliveira et al., 2016], that is a formalisation of the well
know theorem of confluence of orthogonal systems in the context of TRSs. As mentioned
in the introduction, a similar result for Nominal Rewriting Systems is discussed in this
thesis.

The next codes are the definitions of joinability and confluence of an arbitrary binary
relation → in the context of abstract rewriting. Notice that → here is a PVS variable
and RTC(→) is the reflexive transitive closure of →.
- joinable?(→)(x, y): bool = EXISTS z: RTC(→)(x, z) & RTC(→)(y, z)

- confluent?(→): bool = FORALL x, y, z: RTC(→)(x, y) & RTC(→)(x, z) =>

joinable?(→)(y, z)

In the subtheory results_confluence of TRS, there is a lemma called
R1_Confl_iff_R2_Confl that ensures that confluence of a relation→1 holds if, and only
if, →2 is confluent, given that RTC(→1)=RTC(→2).
- R1_Confl_iff_R2_Confl: LEMMA RTC(→1) = RTC(→2) =>

(confluent?(→1) <=> confluent?(→2))

Following, one of the sequents is presented. Observe that the variable x is declared
with the product type [T,T], so that it is actually a pair.
- R1_Confl_iff_R2_Confl :

{-1} FORALL (x: [T, T]): RTC(→1)(x) = RTC(→2)(x)

17

|–––-

[1] (confluent?(→1) <=> confluent?(→2))

In PVS, the negative formulas are the antecedent and the positive ones are the conse-
quent. In this proof, since the information of the formula -1 is used several times (with
different instances), then it is possible to use the command (copy) in order to duplicate it.
Notice that proofs in PVS are developed from the main goal to the leaves. This way, the
proof commands are intended to perform the opposite of the corresponding proof rules of
the sequent calculus, leading each branch into axioms. For instance, (copy) corresponds
to the structural rule of contraction.

a, a,Σ `Γ Λ
a,Σ `Γ Λ

(C `)
Σ `Γ a, a,Λ
Σ `Γ a,Λ

(C)

One may have irrelevant information in one sequent in order to prove a consequent
formula. In the next sequent, for instance, only the formulas -1, -6 and -7 are necessary
to prove 1.
- R1_Confl_iff_R2_Confl.1 :

{-1} joinable?(R1)(y, z)

[-2] RTC(R2)(x, y)

[-3] RTC(R2)(x, z)

{-4} RTC(R1)(x, y)

{-5} RTC(R1)(x, z)

[-6] FORALL (x: [T, T]): RTC(R1)(x) = RTC(R2)(x)

[-7] FORALL (x: [T, T]): RTC(R1)(x) = RTC(R2)(x)

|–––-

[1] joinable?(R2)(y, z)

So, one can apply the command (hide -2 -3 -4 -5) to have a more succint presen-
tation of the sequent. This corresponds to the structural inference rule of weakening, in
the sequent calculus.

Σ1 `Γ Λ1

Σ2 `Γ Λ2
(W) if Σ1 ⊆ Σ2 and Λ1 ⊆ Λ2

Another interesting command is the (case) that represents one application of the Cut
rule in the sequent calculus.

18

(τ(Γ)(a) ∼ bool)Γ Σ, a `Γ Λ Σ `Γ a,Λ
Σ `Γ Λ

(Cut)

In the Cut rule, (τ(Γ)(a) ∼ bool)Γ asserts that the type information in the context
Γ designates a boolean type to the expression a, i.e., indeed, a can be introduced as an
additional formula into a sequent. The notation used in such expression about types in
PVS can be found in [Owre and Shankar, 1999]. The proof of the next lemma uses the
command (case).
- R1_R2_RTC_R1_R2: LEMMA union(→1,→2) ⊆ RTC(→1) ◦ RTC(→2)) &

RTC(→1) ◦ RTC(→2) ⊆ RTC(union(→1, →2))

The case introduced is (case "→1⊆ union(→1,→2)"); the proof is then split into
two branches and the formula can be used in the antecedent by one side and one has to
prove it in the consequent on the other side. Sometimes, the information introduced is
trivial or hardly used, so it can be proved directly in the same proof. However, when
the complexity to prove some formula is high, then it is better to prove it in a separate
lemma. Thus to use the separate result one must use the command (lemma) to import
it as a formula, but the semantics of the command is the same as the (case), that is, it
also corresponds to the Cut inference rule.

As mentioned above, a proof branch is complete when an axiom is applicable to the
sequent. In fact, there is no PVS command corresponding to the axiomatic rules of the
sequent calculus of Gentzen, because the proof assistant automatically identifies such
cases and closes the branch. The axiomatic rules are (Ax), (FALSE `) and (` TRUE).

Σ, a `Γ a,Λ
(Ax)

Σ, FALSE `Γ Λ
(FALSE `)

Σ `Γ TRUE,Λ
(` TRUE)

The rule (Ax) asserts that a formula a can be derived from a and (` TRUE) realise the
presence of TRUE in the disjunction of the formulas of the consequent. The rule (FALSE `)
is the absurd rule and it claims that the absurd proves anything.

The elimination of IF-THEN-ELSE from formulas is unusual because of the semantics of
IF a THEN b ELSE c: it represents a conjunctive formula (a IMPLIES b)∧(¬a IMPLIES
c). When it is in the consequent, the treatment of the sequent calculus is preserved in the
sense that the proof is split into two cases to prove the subformulas separately. However,
when the IF-THEN-ELSE is in the antecedent, it takes into consideration the law of the
excluded middle and it assumes that a∨¬a, splitting the proof with a and b in one branch

19

and ¬a and c in the other. Notice that ¬a appears as a in the opposite side: if it is in
the antecedent, then a becomes a positive formula and vice versa.

Σ, a `Γ,a b,Λ Σ `Γ,¬a a, c,Λ
Σ `Γ IF a THEN b ELSE c,Λ

(` IF)
Σ, a, b `Γ,a Λ Σ, c `Γ,¬a a,Λ

Σ, IF a THEN b ELSE c `Γ Λ
(IF `)

Equality is defined in terms of the rules of reflexivity and replacement of expressions.
Transitivity and symmetry can be derived so. The notation a[e] in rules (Refl) and
(Repl) denotes the occurrence of an expression e in a without free variables and it can
extend to sets of formulas such as Λ[e].

Σ `Γ a = a,Λ
(Refl)

a = b,Σ[b] `Γ Λ[b]
a = b,Σ[a] `Γ Λ[a]

(Repl)

The proof of R1_Confl_iff_R2_Confl applies the command (replace) to the next
sequent, which is related to the rule (Repl). The aim is to replace RTC(→1)(x, y) and
RTC(→1)(x, z) for RTC(→2)(x, y) and RTC(→2)(x, y) in the formula -1, respectively.
Such information comes from formulas -4 and -5.
- R1_Confl_iff_R2_Confl.1 :

[-1] RTC(R1)(x, y) & RTC(R1)(x, z) => joinable?(R1)(y, z)

[-2] RTC(R2)(x, y)

[-3] RTC(R2)(x, z)

[-4] RTC(R1)(x, y) = RTC(R2)(x, y)

{-5} RTC(R1)(x, z) = RTC(R2)(x, z)

[-6] FORALL (x: [T, T]): RTC(R1)(x) = RTC(R2)(x)

|–––-

[1] joinable?(R2)(y, z)

The extensionality rules are also equality rules to stablish the equivalence between two
function or product expressions. The rule (FunExt) introduces a Skolem constant s such
that it does not occur free in Γ in order to evaluate the equivalence of two functions f
and g whenever applying both to an arbitrary argument produces the same result.

Σ `Γ,s:A f(s) =B[s/x] g(s),Λ
Σ `Γ f =x:A→B g,Λ

(FunExt) Γ(s) is undefined

For instance, the lemma R1_equal_R2 proves the equivalence between two relations.

20

- R1_equal_R2: LEMMA subset?(→1,→2) & subset?(→2,RTC(→1)) =>

RTC(→1) = RTC(→2)

To prove this lemma, one may use the PVS commands (decompose-equality) or
(apply-extensionality) related to rule (FunExt) in order to introduce arbitrary ar-
guments to RTC(→1) and RTC(→2), obtaining the following sequent.
- R1_equal_R2 :

[-1] subset?(→1,→2)

[-2] subset?(→2,RTC(→1))

|–––-

{1} RTC(→1)(x1, x2) = RTC(→2)(x1, x2)

Observe that x1 and x2 are new for the previous context. The same technique can
be used for products. In this case, to prove the equivalence between two products, one
might split the proof, proving the equivalence between the corresponding coordinates in
separate branches.

PVS also provides a mechanism for defining abstract datatypes of a class that includes
all the “tree-like” recursive data structures which are freely generated by a number of
constructor operations [Owre and Shankar, 1997]. For example, the abstract datatype of
lists is generated by the constructors null and cons. In the context of the theory TRS,
terms are defined with the constructors vars and app, that corresponds to variables and
functional terms (application of a function symbol to n arguments, where n is the arity
of the symbol).
- term[variable: TYPE+, symbol: TYPE+, arity: [symbol -> nat]] : DATATYPE

BEGIN

vars(v: variable): vars?

app(f:symbol, args:{args:finseq[term] | |args|=arity(f)}): app?

END term

The proof assistant automatically generates an induction scheme that allows to develop
inductive proofs on the structure of terms. Such scheme is presented in the next code,
where P is a variable for an arbitrary predicate over terms. In the PVS theory nominal
unification, inductive proofs on the structure of nominal terms were widely used.
- term_induction: AXIOM

FORALL (P: [term -> boolean]):

((FORALL (v1: variable): P(vars(v1))) AND

(FORALL (f: symbol, SEQ: {args: finseq[term] | |args|=arity(f)}):
(FORALL (i: below[|SEQ|]): P(SEQ(i))) IMPLIES

P(app(f, SEQ))))

IMPLIES (FORALL (t: term): P(t))

21

To prove a property for all terms, it is sufficient to prove it in the base case for arbitrary
variables and to make the induction step, proving the property for a functional term by
assuming it for the arguments of such term.

Additionally, PVS provides a partial strict well founded ordering << over the elements
of the datatype. In the case of terms, it is defined as below. Consider subterm(x,y) to
mean the usual relation of subterms over trees and read the above expression as x is a
subterm of y (maybe equal).
- <<: (strict_well_founded?[term]) =

LAMBDA (x, y: term):

CASES y OF

vars(v): FALSE,

app(f, SEQ): EXISTS (i: below[|SEQ|]): subterm(x, SEQ(i))

ENDCASES

This ordering is very useful to define recursive functions depending on the datatypes,
since such definitions require a decreasing measure to prove termination of the recursive
evaluation. The next chapter will explore more of such ordering.

Another feature of PVS is the support for dependent types, i.e., it is possible to build
types which depend on elements. For instance, in the theory TRS, a type to represent all
positions of a specific term is presented.
- positions?(t: term): TYPE = {p: position | positionsOF(t)(p)}

In the code above, positionsOF(t) is a recursive predicate that evaluates if a position
is indeed a position of the term t.

22

Chapter 3

Nominal Unification in PVS

Nominal unification is a problem that has been investigated and proved to be solvable
in quadratic time [Calvès, 2010]. Algorithms that solve this problem are important tools
for nominal rewriting, since they allow to compute rewrite steps and to check ambiguity
between rewrite rules, as it will be explored in Chapter 4.

In this chapter, we present a functional specification of a new nominal unification
algorithm and the formalisation of its correctness and completeness in the language of
the higher-order proof assistant PVS [Shankar et al., 2001]. PVS was chosen because
it has a large library about term rewriting systems ([Galdino and Ayala-Rincón, 2009,
Galdino and Ayala-Rincón, 2010]). In this way, our theory nominal unification ex-
tends this background about rewriting and it serves as a channel to spread the nominal
setting among PVS users, providing formalised basic results in this approach.

The presentation of this formalisation is accompanied with the whole PVS development
for nominal unification, which includes specifications of all notions and definitions as well
as formalisations of the proofs of all lemmas and theorems given in this chapter. The
development is available in the PVS theory for term rewriting systems trs.cic.unb.br.

As discussed in the introduction, this formalisation differs from others in the form of
the unification algorithm specification, that does not carry freshness contexts as param-
eters and it is in a style closer to functional presentations such as Robinson’s first-order
unification algorithm, which in turn have been formalised in a variety of proof assistants
(e.g., [Avelar et al., 2014, Paulson, 1985]). Also, some differences in the formalised proofs
were found, specially when proving transitivity of the relation ≈α under a freshness con-
text.

23

3.1 Specification

This section will present details of the PVS specification for the theory nominal
unification, such as the data structure for terms, action of permutations, action of
substitutions, freshness and α-equivalence.

The next specification in PVS represents nominal terms and allows us to have syn-
tactical induction schemes generated automatically. It follows the grammar proposed in
Definition 3 of Section 2.1.

term[atom:TYPE+, perm:TYPE+, variable:TYPE+, symbol:TYPE+]:DATATYPE

BEGIN

at (a: atom): atom?

* (p: perm, V: variable): susp?

unit: unit?

pair (term1: term, term2: term): pair?

abs (abstr: atom, body: term): abs?

app (sym: symbol, arg: term): app?

END term

In PVS, names and variables were specified as natural numbers in order to stress the
fact that the sets which contain them are countably infinite and symbols of functions are
specified as strings. This does not create any ambiguity because atomic terms have the
constructor at in the head and unknowns only occur accompained with a permutation,
both as arguments of the constructor “*”. One must not be tempted to think that this last
constructor is a function which applies the permutation to the unknown in a term in the
class of (susp?). However, the PVS variables used in the specifications and proofs of the
theory nominal unification use a more standard notation as in Chapter 2; for instance,
a, b, c range over atoms, X, Y range over unknowns and f, g range over symbols.

Permutations are specified as lists of pairs of atoms. The function act applies a
permutation to an atom by the recursive action of the swappings that represent the
permutation.

- perm: TYPE = list[[atom,atom]]

- act(pi:perm)(c): RECURSIVE atom =

CASES pi OF

null: c,

cons((a,b),rest): LET d = act(rest)(c) IN

IF d = a THEN b

ELSIF d = b THEN a ELSE d ENDIF

ENDCASES

MEASURE pi BY <<

24

Remark 3.1. The necessity of ‘measure’ functions in PVS’s recursive functions is for
proving termination according to the operational semantics of termination of PVS. This
measure on the parameters should decrease after each recursive call. In the previous
function act the measure ‘<<’ represents the standard measure on the data structures
of permutations (i.e., lists). In the code presented next, the measure << represents the
subterm relation. In some cases, as for these functions, the system can automatically verify
the decrement of the measure provided, what is not always the case, as for Definition 16
in Section 3.4.

The function ext extends the action of permutations to terms homomorphically, i.e.,
it applies act to atoms and accumulates permutations in suspensions.

- ext(pi:perm)(t:term): RECURSIVE term =

CASES t OF

at(a): at(act(pi)(a)),

*(pm, v): *(append(pi, pm), v),

unit: unit,

pair(t1,t2): pair(ext(pi)(t1),ext(pi)(t2)),

abs(ab, bd): abs(act(pi)(ab), ext(pi)(bd)),

app(sl, ag): app(sl, ext(pi)(ag))

ENDCASES

MEASURE t BY <<

The function subs has a pair (X,s) as arguments and subs(X,s) represents a nuclear
substitution, which can be applied to a term t, substituting all occurences of X by s in t.

- subs(X,s)(t): RECURSIVE term =

CASES t OF

at(a): at(a),

*(pm, Y): IF X = Y THEN ext(pm)(s) ELSE pm * Y ENDIF,

unit: unit,

pair(t1, t2): pair(subs(X,s)(t1), subs(X,s)(t2)),

abs(a, bd): abs(a, subs(X,s)(bd)),

app(f, ag): app(f, subs(X,s)(ag))

ENDCASES

MEASURE t BY <<

Substitutions are specified as lists of pairs of variables and terms. Subs applies the
nuclear substitutions of a substitution theta recursively to a term t.

25

- Subs(theta)(t): RECURSIVE term =

CASES theta OF

null : t,

cons(head,tail): subs(head)(Subs(tail)(t))

ENDCASES

MEASURE theta BY <<

The next lemma states the invariance of alternating the application of a permutation
and a substitution on a term. For the sake of simplicity, the notation assumed in Chapter 2
will be used here.

Lemma 3.2. For any term t, π • (tθ) = (π • t)θ.

Proof. By induction on the length of θ and using an auxiliary result in the induction step
that proves the same for a nuclear substitution which, in turn, is proved by induction on
the structure of t.

3.1.1 Freshness and α-equivalence

Following, we present the notions of freshness and α-equivalence as done in PVS. Those
functions relate to Definition 7, but they are specified separately.

The freshness contexts were specified as lists of pairs in the shape [atom,variable];
however we are preserving the notation of sets from the previous chapter for simplicity.
So, a#X ∈ ∇ means that (a,X) occurs in the list ∇. Also, ∇, ∆ and π denote the
code for the PVS variables Nabla, Delta and pi and π−1 represents the reverse list of the
permutation π.

Definition 10 (Freshness) Let ∇, a and t be a freshness context, an atom and a
term, respectively. So, we define the following function as the freshness predicate in
a context ∇.
fresh(∇)(a, t): RECURSIVE bool =

CASES t OF

at(b): a 6= b,

π∗X: act(π−1)(a)#X ∈ ∇,
unit: TRUE,

pair(t1, t2): fresh(∇)(a, t1) AND fresh(∇)(a, t2),
abs(b, t′): IF a = b THEN TRUE

ELSE fresh(∇)(a, t′) ENDIF,

app(f, t′): fresh(∇)(a, t′)

26

ENDCASES

MEASURE t BY < <

Notation: If ∇ and ∆ are freshness contexts, then ∇ ` ∆ means that ∆ ⊆ ∇ and ∇∆
denotes ∇∪∆.

Example 3.3. fresh({a#X})(a, f(at(b), id∗X)) returns TRUE while FALSE is the result
of fresh(∅)(a, f(at(a), id∗X)) because a is not fresh in at(a) neither in id∗X with the
empty context. Only one failure would be enough to have FALSE in the second problem.

Now, with the specifications of permutation and freshness, α-equivalence can be spec-
ified in a formal way, as well.

Definition 11 (α-equivalence) Let ∇, t and s be a freshness context and two
terms, respectively. So, we define the next function as the relation of α-equivalence
in the context ∇.
alpha(∇)(t, s): RECURSIVE bool =

CASES t OF

at(a): s = at(a),
π∗X: susp?(s) AND X = V(s) AND ∀a ∈ ds(π,p(s)): a#X ∈ ∇,
unit: s = unit,

pair(t1, t2): pair?(s) AND alpha(∇)(t1,term1(s)) AND

alpha(∇)(t2,term2(s)),
abs(a, t′): abs?(s) AND IF a = abstr(s) THEN alpha(∇)(t′,body(s))

ELSE fresh(∇)(a,body(s)) AND

alpha(∇)(t′, (a abstr(s))•body(s)) ENDIF,

app(f, t′): app?(s) AND f = sym(s) AND alpha(∇)(t′,arg(s))
ENDCASES

MEASURE t BY < <

Here ds(π, π′) denotes the set {b ∈ A | act(π)(b) 6= act(π′)(b)} (the difference
set as in Definition 7).

3.2 A Direct Formalisation of Transitivity of α-
equivalence

This section presents in detail the proof of transitivity for the relation alpha(∇)
presented. As discussed before, this formalisation differs from a previous formalisa-
tion in Isabelle/HOL [Urban, 2004] and from an attempt to improve such formalisa-
tion [Urban, 2010]. To do so, some preliminar formalised results are presented now.

27

We consider the notation from Section 2.1, i.e., the specifications fresh(∇)(a, t) and
alpha(∇)(t, s) are represented as ∇ ` a#t and ∇ ` t ≈α s, respectively.

The following two auxiliary lemmas express invariance of derivability in the previous
calculus under the action of permutations and weakening of freshness contexts. They are
basic results in the context of nominal and can be found in [Fernández and Gabbay, 2007],
for example. The next lemma is proved in detail here in order to show the kind of inductive
proof that we have developed.

Lemma 3.4. Let ∇, a and t be a freshness context, an atom and a term, respectively.
For all permutation π, we have ∇ ` a#t⇔ ∇ ` π(a)#π • t.

Proof. It is proved by induction on the structure of t.

• t = b̄: ∇ ` a#b̄ if and only if a 6= b. Also, a 6= b if and only if π(a) 6= π(b), because
otherwise, π−1(π(a)) = π−1(π(b)) would hold. Finally, π(a) 6= π(b) holds if and only
if ∇ ` π(a)#π(b).

• t = π′ · X: ∇ ` a#π′ · X if and only if π′−1(a)#X ∈ ∇. Additionally,
(π ◦ π′)−1(π(a)) = π′−1 ◦ (π−1 ◦ π)(a) = π′−1(a). Therefore, π−1(a) ∈ ∇ iff
(π ◦ π′)−1(π(a))#X ∈ ∇ iff ∇ ` π(a)#(π ◦ π′) ·X.

• t = [b]t′: If a = b, then ∇ ` a#[a]t′ and ∇ ` π(a)#[π(a)]π • t′ trivially. Otherwise,
by induction hypothesis (IH), ∇ ` a#t′ iff ∇ ` π(a)#π • t′ iff ∇ ` π(a)#[π(b)]π • t′.

• For the cases t = f t′ and t = (t1, t2) the proof follows trivially by IH. The case t = ()
is even easier because the permutation has no effect over it and any atom is fresh
in the unit.

In the formalisation itself, some extra details have to be treated such as the asso-
ciativity of the action of permutations and the inverse character of the reverse list of a
permutation. Such ordinary details are not considered here for brevity.

Lemma 3.5. If ∆ ` ∇ and ∇ ` a#t, then ∆ ` a#t.

Proof. The proof is by induction on the structure of t, following the scheme similar to the
one of the previous lemma.

The next four auxiliary lemmas relate α-equivalence, freshness and the action of per-
mutations. The first one expresses preservation of freshness by α-equivalent terms; the
second one, alternation of the action of a permutation and its inverse on α-equivalent
terms; the third one, invariance of α-equivalence under the action of a permutation; and,
the fourth one, preservation of α-equivalence of a term under the action of permutations
whose difference set is fresh in the term.

28

Lemma 3.6. ∇ ` a#s and ∇ ` s ≈α t implies ∇ ` a#t.

Lemma 3.7. ∇ ` s ≈α π • t⇒ ∇ ` π−1 • s ≈α t.

Lemma 3.8. ∇ ` s ≈α t⇔ ∇ ` π • s ≈α π • t.

Lemma 3.9. ∇ ` ds(π1, π2)#t implies ∇ ` π1 • t ≈α π2 • t.

Lemmas 3.6-3.9 are proved by induction on s, applying Lemma 3.4. For Lemma 3.7,
Lemma 3.6 is applied.

The treatment of the results presented so far is the same as in previous papers
([Urban et al., 2004, Fernández and Gabbay, 2007, Urban, 2010]) and their complete for-
malisations are available in the accompanying PVS development.

The proof of the next lemma is shown in detail because, at this point, the formalisation
differs from the one given in [Urban, 2004] and reported in [Urban, 2010]. The proof
engine of PVS provides already the inductive scheme over the structure of nominal terms,
which are specified as an abstract datatype presented at the beginning of Section 3.1.
Such induction scheme is discussed at the end of Section 2.2 for terms in the theory TRS.

Lemma 3.10 (Transitivity of α-equivalence). The relation ≈α is transitive under a given
context ∇, i.e., ∇ ` t1 ≈α t2 and ∇ ` t2 ≈α t3 imply ∇ ` t1 ≈α t3.

Proof. The proof is by induction on the structure of t1.

• t1 = ā: then by definition of ≈α, t2 = t3 = ā.

• t1 = π1 ·X: so t2 = π2 ·X and t3 = π3 ·X. We need to prove that ds(π1, π3)#X ⊆ ∇.
So, take c such that π1(c) 6= π3(c). There are two cases: if π1(c) = π2(c), then
π2(c) 6= π3(c) and c#X ∈ ∇ for ds(π2, π3)#X ⊆ ∇; if π1(c) 6= π2(c), then c#X ∈ ∇
because ds(π1, π2)#X ⊆ ∇.

• t1 = () implies t2 = () and t3 = ().

• t1 = (s1, s2): then t2 = (u1, u2) and t3 = (w1, w2). By induction hypothesis (IH),
∇ ` s1 ≈α w1 and ∇ ` s2 ≈α w2.

• t1 = f s: then t2 = f u and t3 = f w. By IH, ∇ ` s ≈α w.

• t1 = [a]s: then t2 = [b]u and t3 = [c]w. It is necessary to compare the abstractors:

– a = b = c: thus the result follows by IH trivially.

– a = b 6= c: by definition, ∇ ` s ≈α u and ∇ ` u ≈α (b c) • w and ∇ ` b#w.
By IH, ∇ ` s ≈α (b c) • w. As a = b, then freshness condition is satisfied to a
as well.

29

– a 6= b = c: we have ∇ ` a#u, ∇ ` s ≈α (a c) • u and ∇ ` u ≈α w. By
Lemma 3.8, ∇ ` (a c) • u ≈α (a c) • w and, by IH, ∇ ` s ≈α (a c) • w. By
Lemma 3.4, ∇ ` c#(a c)•u and ∇ ` c#(a c)•w by Lemma 3.6. Finally, again
by Lemma 3.4, ∇ ` a#w.

– b 6= a = c: it is known that ∇ ` s ≈α (b c) • u and ∇ ` u ≈α (b c) • w. Then,
∇ ` (b c) • u ≈α w by Lemma 3.7. By IH, ∇ ` s ≈α w.

– a 6= b 6= c 6= a: it is necessary to prove that ∇ ` s ≈α (a c) • w and
∇ ` a#w. Let us prove first freshness: by definition of ≈α, ∇ ` a#u and
∇ ` u ≈α (b c) • w. By Lemma 3.6, ∇ ` a#(b c) • w and, by Lemma 3.4(⇐),
∇ ` a#w. Now lets prove α-equivalence: by hypothesis, ∇ ` s ≈α (a b) • u,
∇ ` u ≈α (b c) • w and ∇ ` b#w. By Lemma 3.8, ∇ ` (a b) • u ≈α
(a b)(b c) • w. As ds((a b)(b c), (a c)) = {a, b} and both atoms are fresh in w,
then ∇ ` (a b)(b c) • w ≈α (a c) • w by Lemma 3.9. Now, applying IH twice,
one obtains ∇ ` s ≈α (a c) • w.

Note that the critical point in this proof is the abstraction, particularly when all
the abstractors differ. This is due to the asymmetry of rule (≈α[b]) in Table 2.1. The
previous lemma was also presented in [Urban et al., 2004, Fernández and Gabbay, 2007],
but in [Urban, 2010], a weak equivalence notion (Definition 12) is used as an intermediate
relation to contour the problem with the abstraction case. However, auxiliary lemmas
similar to the ones presented here were necessary in [Urban, 2010], in addition to other
technical results to deal specifically with this weak equivalence (some of those additional
lemmas in [Urban, 2010] are particular cases of transitivity). In the current formalisation,
weak equivalence was not needed and the abstractions were treated as given in the five
cases in the proof of Lemma 3.10.

Definition 12 (Weak-equivalence) Given two terms s, t, they are said to be
weak equivalent (notation: s ∼ t) whenever there exists a derivation of s ∼ t using
the following rules:

ā ∼ ā (∼a) ds(π, π′) = ∅

π ·X ∼ π′ ·X
(∼X) () ∼ () (∼())

s1 ∼ t1 s2 ∼ t2

(s1, s2) ∼ (t1, t2)
(∼pair)

s ∼ t

[a]s ∼ [a]t
(∼[a])

s ∼ t

f s ∼ f t
(∼f)

30

In the previous definition, observe that when s ∼ t, then s and t differ only in possible
representations of permutations π and π′ in suspensions. Even so, the action of those
permutations must be equal. Thus, the relation ∼ actually is closer to syntactic equality
than to α-equivalence. To obtain transitivity of ≈α using this definition, several auxil-
iary steps are necessary, among others, proving that ∼ is invariant under the action of
permutations, preservation of freshness by weak-equivalent terms, etc. These lemmas are
similar to the previously mentioned for ≈α. In addition, it is necessary to prove that,
under a freshness context ∆, (≈α ◦ ∼) ⊆≈α, which is the key property for concluding
transitivity of ≈α. All this work is unnecessary in our approach.

Lemma 3.11. (Equivalence) ≈α is an equivalence relation under any context ∇.

Proof. Transitivity is guaranteed by Lemma 3.10. Reflexivity (∇ ` t ≈α t) and symmetry
(∇ ` t ≈α s implies ∇ ` s ≈α t) are easy to verify through an inductive proof on the
structure of t. The interesting case is the proof of symmetry for abstractions with different
abstractors. In this case, ∇ ` [a]t′ ≈α [b]s′ means ∇ ` t′ ≈α (a b) • s′ and ∇ ` a#s′.
Applying (a b) to the freshness, we obtain ∇ ` b#(a b) • s′ and, by Lemma 3.6, ∇ ` b#t′.
Now, by IH, ∇ ` (a b) • s′ ≈α t′ and, by Lemma 3.7, ∇ ` s′ ≈α (a b) • t′. This proves
∇ ` [b]s′ ≈α [a]t′.

Notice that, unlike the proofs given in [Urban et al., 2004, Urban, 2010], this for-
malised proof of symmetry does not use transitivity. Thus, these two properties are
independent from each other.

3.3 Minimal Freshness Contexts

A solution for a unification problem is a pair (∇, θ) of a freshness context and a substi-
tution (see Section 3.4). A nominal unification algorithm should generate “most general
solutions” with respect to an ordering “≤” as in the first-order case (see Definition 18). In
the current formalisation, a function was specified that can compute a minimal freshness
context ∇ which derives a freshness problem a#t when possible, i.e., ∇ ` a#t and ∇ is
a subset of any other context ∆ such that ∆ ` a#t.

In the next function, the measure “<<” denotes the proper subterm relation that is
generated by PVS when the abstract data structure specified for terms is type-checked.
As for the example in Remark 3.1, termination with respect to this measure can be
automatically verified.

Definition 13 Let a be an atom and t be a term. Define the function 〈_#_〉sol
that takes as input the pair (a, t) and outputs a freshness context and a Boolean, as

31

follows:

〈a#t〉sol := CASES OF t :
b̄ : (∅, a 6= b),

π ·X : ({π−1 • a#X}, T rue),
() : (∅, T rue),

(t1, t2) : LET (∆1, b1) = 〈a#t1〉sol, (∆2, b2) = 〈a#t2〉sol
IN IF b1 = b2 = True THEN (∆1∆2, T rue)

ELSE (∅, False),
[b]t′ : IF a = b THEN (∅, T rue) ELSE 〈a#t′〉sol,
f t′ : 〈a#t′〉sol

MEASURE <<

The function above was taken from the transformation rules related to the unification
algorithm in [Urban et al., 2004]. The difference is that here the freshness solutions are
obtained separately from the substitutions which solve the equational problems in the
unification algorithm. In this way, it is clear that the freshness constraints cannot modify
the substitution that solves the problem, although they can restrict the validity of a
unification problem.

The following lemma formalises the correctness of the previous definition.

Lemma 3.12 (Correctness of 〈_#_〉sol). Take (∆, b) = 〈a#t〉sol. Then,

(i) b = True⇒ ∆ ` a#t, and

(ii) for any ∇, ∇ ` a#t⇒ b = True and ∇ ` ∆.

Proof. The proof is by induction on the structure of t. The interesting case is when
t = (t1, t2), because in this case we need to have the same context in the derivations
∇ ` a#t1 and ∇ ` a#t2. However, the function 〈_#_〉sol returns minimal contexts ∆1

and ∆2 to t1 and t2, respectively. For this reason, ∆1 and ∆2 have to be joined when
computing 〈_#_〉sol. Then, using Lemma 3.5, it is possible to enlarge the contexts into
the derivations ∆1∆2 ` a#t1 and ∆1∆2 ` a#t2 in order to derive the freshness for the
pair.

This function is crucial to build independently a freshness context for a whole nominal
unification problem from its partial solutions, and it is used in the recursive treatment
for the case of abstractions and pairs as it will be explained in the next section.
Notation: The function 〈·〉sol can be generalised to sets of instantiated freshness con-
straints. In particular, 〈∇θ〉sol = (∆, T rue), where ∆ is the union of all the freshness

32

contexts computed by 〈a#(id ·X)θ〉sol, for each a#X ∈ ∇, if every subproblem is consis-
tent, and 〈∇θ〉sol = (∅, False) otherwise.

The notation ∆ ` ∇θ states that ∆ ` a#(id ·X)θ is derivable for all a#X ∈ ∇.

3.4 Nominal unification algorithm

In order to construct a nominal unification algorithm as a recursive function in the spec-
ification language of PVS, it is necessary to provide a recognisable answer in cases of
failure, because PVS does not allow partial functions. To deal with failure, our algorithm
will return triplets of the form (∇, θ, b), which are a freshness context, a substitution
and a Boolean, respectively, instead of pairs of the form (∇, θ). The triplet of the form
(∅, Id, False) identifies failure cases and triplets of the form (∇, θ, T rue) successful cases
with solutions of the form (∇, θ). For the sake of efficiency, in failure cases, the freshness
context and the substitution are cleared into ∅ and Id respectively. If any branch fails,
then it is not worth to carry partial solutions throughout recursive calls.

Definition 14 (Unifiable terms and unifiers) Two terms t, s are said to be
unifiable if there exists a context ∇ and a substitution θ such that ∇ ` tθ ≈α sθ.
Under these conditions, the pair (∇, θ) is called a unifier of t and s.

Definition 15 The depth of a term is computed by the following function:

depth(ā) = depth(π ·X) = depth(()) = 0 depth([a]t) = 1 + depth(t)
depth((t1, t2)) = 1 +max(depth(t1), depth(t2)) depth(f t) = 1 + depth(t)

33

The function depth is used as component of the lexicographic measure provided to
ensure termination of the nominal unification algorithm presented below.

Definition 16 (Nominal Unification Function) Let t, s be two nominal terms.
Then, we define the function unify as below:

unify(t, s) := IF s = πs ·Xs AND Xs /∈ Vars(t) THEN (∅, [Xs 7→ π−1
s • t], T rue)

ELSE

CASES OF (t, s) :
(πt ·X, πs ·X) : (ds(πt, πs)#X, Id, True),

(πt ·Xt, s) : IF Xt /∈ Vars(s) THEN (∅, [Xt 7→ π−1
t • s], T rue),

(ā, ā) : (∅, Id, T rue),
((), ()) : (∅, Id, T rue),

((t1, t2), (s1, s2)) : LET (∇1, θ1, b1) = unify(t1, s1),
(∇2, θ2, b2) = unify(t2θ1, s2θ1),
(∇3, b3) = 〈∇1θ2〉sol

IN (∇2∇3, θ1θ2, b1 ∧ b2 ∧ b3),
([a]t′, [b]s′) : IF a = b THEN unify(t′, s′)

ELSE LET (∇1, θ, b1) = unify(t′, (a b) • s′),
(∇2, b2) = 〈a#s′θ〉sol

IN (∇1∇2, θ, b1 ∧ b2),
(f t′, f s′) : unify(t′, s′),
ELSE : (∅, Id, False)

MEASURE lex(|Vars(t, s)|, depth(t))

The measure function provided (see Remark 3.1) is lexicographic, with first component
the number of variables in the unification problem and second component the depth of
the first term of the unification problem.

The next remarks explain how the function 〈_#_〉sol correctly builds the necessary
contexts for the abstraction and pair cases avoiding passing as parameter the fresh-
ness contexts, as done in unification mechanisms based on transformation rules (cf.
[Urban, 2004]). In these remarks, terms are considered unifiable.

Remark 3.13. In case of pairs, (∇2∇3, θ1θ2) has to be a unifier for (t1, t2) and (s1, s2),
i.e., ∇2∇3 ` t1θ1θ2 ≈α s1θ1θ2 and ∇2∇3 ` t2θ1θ2 ≈α s2θ1θ2. Initially, unify builds the
unifier (∇1, θ1) for t1 and s1. Afterwards, (∇2, θ2) is computed as a unifier for t2θ1 and
s2θ1. If 〈∇1θ2〉sol = (∇3, T rue), then ∇1 ` t1θ1 ≈α s1θ1 implies ∇3 ` t1θ1θ2 ≈α s1θ1θ2.
Finally, since ∇2 ` t2θ1θ2 ≈α s2θ1θ2, weakening the contexts we obtain the desired unifier.

34

Remark 3.14. When unifying two abstractions with different abstractors, the answer
(∇1∇2, θ) has to be a unifier for [a]t and [b]s. Indeed, initially the recursive call
unify(t, (a b) • s) provides a unifier (∇1, θ) for this problem, if it is possible. Hence,
∇1 ` tθ ≈α (a b) • sθ, but not necessarily ∇1 would be able to derive a#sθ. Then,
〈_#_〉sol computes the minimal context ∇2 which derives a#sθ separately. Joining both
contexts, the derivation ∇1∇2 ` [a]tθ ≈α [b]sθ can be completed.

Example 3.15. Take the problem of unifying (X,X) and ((a b) ·X, a). First, one unifies
X and (a b) ·X. The result is the substitution Id and the context {a#X, b#X}. Then, to
unify X Id and a Id, we need the substitution [X 7→ a] and the empty context ∅. Then,
{a#X, b#X} is updated with [X 7→ a], and 〈a#a〉sol returns failure.

Formalisation of termination of the function unify is not obtained automatically and
requires human intervention to show that lex(|Vars(t, s)|, depth(t)) decreases in each
recursive call. Observe that there are recursive calls in the cases of pairs, abstractions
and applications. In the last two cases one advances on the structure of the first (and
second) terms calling recursively a problem with the same number of variables, but smaller
depth. The same happens for the first recursive call in the case of pairs. For the second
recursive call of the case of pairs, when unify(t2θ1, s2θ1) is computed, if θ1 6= Id, the
number of variables in the problem decreases for the nature of the nuclear substitutions
generated in suspensions. So it is necessary to prove that the substitutions generated by
unify have a special characterisation, as asserted in the next lemma.

Definition 17 (Type Subs(s) substitutions) The substitution [X1 7→
t1] . . . [Xn 7→ tn] is said to be of type Subs(s) if

n⋃
i=1

Vars((Xi, ti)) ⊆ Vars(s) and Xi /∈ Vars(ti),∀i = 1, . . . , n.

Lemma 3.16 (Decrement of variables for substitutions of type Subs(s)). Let θ be a
substitution of type Subs(s).

(i) Vars(tθ) ⊆ Vars((t, s)).

(ii) θ 6= Id implies that |Vars(tθ)| < |Vars((t, s))|.

Proof. By induction on the length of θ.

(i) If θ = Id, then obviously Vars(t) ⊆ Vars((t, s)). If θ = θ′[X 7→ u], then tθ =
(tθ′)[X 7→ u]. By IH, Vars(tθ′) ⊆ Vars((t, s)). As X /∈ Vars(u), it is known

35

that Vars(tθ) = Vars(tθ′[X 7→ u]) = Vars((tθ′, u)) \ {X} ⊆ Vars((t, s)) \ {X} ⊆
Vars((t, s)).

(ii) From (i), Vars(tθ′[X 7→ u]) ⊆ Vars((t, s))\{X}. Since X ∈ Vars(s), the cardinality
indeed decreases, i.e., |Vars((t, s)) \ {X}| = |Vars((t, s))| − 1.

Lemma 3.17 (Type of substitutions built by unify). If unify(t, s) = (∇, θ, b), then the
substitution θ is of type Subs((t, s)).

Proof. This is easily checked observing the nuclear substitutions generated in the cases
of suspensions. Note that, one condition to build [X 7→ π−1 • u], for instance, is X /∈
Vars(u).

The last two lemmas ensure termination for the function unify:

Corollary 3.18 (Termination of unify). The function unify is total.

Notation: It is said that ∆ ` θ ≈α ϑ if, for any Y , ∆ ` (id · Y)θ ≈α (id · Y)ϑ, for
substitutions θ and ϑ.

An auxiliary lemma regarding the action of α-equivalent substitutions over a term is
necessary for the formalisation of the completeness of the unification algorithm and it is
presented below.

Lemma 3.19. ∆ ` θ ≈α ϑ implies ∆ ` tθ ≈α tϑ, for all term t.

Proof. By induction on the structure of t.

The next results are the most difficult part of the formalisation (fully available at
trs.cic.unb.br). Soundness and completeness formalisations follow the same inductive
proof technique and the analysis of cases are also analogous. Thus, we focus only on
completeness.

Lemma 3.20 (Soundness). Let (∇, θ, b) be the solution for unify(t, s). If b = True, then
(∇, θ) is a unifier of t and s.

Proof. The proof is by induction on lex(|Vars((t, s))|, depth(t)). It follows the cases dis-
tributed in the recursive definition of unify (Definition 16).

The previous lemma alone is not enough in the sense that, if the algorithm returns
always False, then no unifier is provided, even to unifiable terms. The next theorem

36

guarantees that the algorithm actually gives a unifier whenever the terms are unifiable
and the answer is the most general unifier.

Definition 18 (More general solutions) Let ∇,∆ be two contexts and ϑ, θ two
substitutions. Then (∇, ϑ) ≤ (∆, θ) if there exists µ such that

∆ ` ∇µ and ∆ ` ϑµ ≈α θ.

If (∇, ϑ) is the least unifier for a unification problem according to “≤”, then it is a
most general unifier (mgu).

Theorem 3.21 (Completeness). Let (∇, ϑ, b) be the solution for unify(t, s). If there exists
any other solution (∆, θ) for the unification problem, i.e., ∆ ` tθ ≈α sθ, then b = True

and (∇, ϑ) ≤ (∆, θ).

Proof. The proof is by induction on lex(|Vars(t, s)|, depth(t)). There are some cases to
consider: either t or s are suspensions or both have the same structure, that is, t and s
are units or abstractions, for instance. That is due to the α-equivalence between tθ and
sθ and the fact that θ cannot change the structure of a term, unless when acting over
suspensions. The proof follows distinguishing cases according to the form (t, s). Below,
we present the cases where s is a suspension, both are pairs, and both are abstractions;
these are the most interesting cases.

• (t, π ·X) and X /∈ Vars(t) : so ∆ ` tθ ≈α (π ·X)θ = π • (Xθ) by Lemma 3.2. We
need to prove (∅, [X 7→ π−1 • t]) ≤ (∆, θ). By definition of ≤, it is necessary to
provide µ such that ∀Y : ∆ ` Y [X 7→ π−1 • t]µ ≈α Y θ. Instantiate it with θ.

– Y 6= X implies ∆ ` Y [X 7→ π−1 • t]θ = Y θ ≈α Y θ.

– Y = X: ∆ ` tθ ≈α π • (Xθ) implies ∆ ` π−1 • (tθ) ≈α Xθ, by Lemma 3.7. As
X[X 7→ π−1 • t]θ = π−1 • tθ, the α-equivalence is derivable.

• ((t1, t2), (s1, s2)) : by hypothesis, ∆ ` t1θ ≈α s1θ and ∆ ` t2θ ≈α s2θ.

By IH, unify(t1, s1) = (∇1, ϑ1, T rue) and (∇1, ϑ1) ≤ (∆, θ), i.e.,

there exists µ such that ∆ ` ∇1µ and ∆ ` ϑ1µ ≈α θ.

By Lemma 3.19, transitivity and symmetry, ∆ ` t2ϑ1µ ≈α s2ϑ1µ, that is, (∆, µ) is
a unifier for t2ϑ1 and s2ϑ1.

37

Using IH again, with unify(t2ϑ1, s2ϑ1) = (∇2, ϑ2, T rue), we obtain ∆ ` ∇2µ̃ and
∆ ` ϑ2µ̃ ≈α µ for some µ̃.

As unify((t1, t2), (s1, s2)) = (∇1ϑ2∇2, ϑ1ϑ2, b), all we need to prove is that ∆ `
ϑ1ϑ2µ̃ ≈α θ and ∆ ` ∇1ϑ2µ̃ (because ∆ ` ∇2µ̃ follows by IH).

By Lemma 3.19, for any variable Y , it is possible to derive

∆ ` (id · Y ϑ1)ϑ2µ̃ ≈α (id · Y ϑ1)µ ≈α id · Y θ.

So, by transitivity, ∆ ` ϑ1ϑ2µ̃ ≈α θ holds.

Finally, as ∆ ` ϑ2µ̃ ≈α µ and ∆ ` ∇1µ, then ∆ ` ∇1ϑ2µ̃ by Lemmas 3.6 and 3.19.

• ([a]t′, [b]s′) : by premisse, ∆ ` a#s′θ and ∆ ` t′θ ≈α (a b) • (s′θ); by Lemma 3.2,
the latter term is equal to ((a b) • s′)θ.

By IH, unify(t′, (a b) • s′) = (∇1, ϑ, T rue) and (∇1, ϑ) ≤ (∆, θ), i.e.,

there is µ such that ∆ ` ∇1µ and ∆ ` ϑµ ≈α θ.

By Lemma 3.6, ∆ ` a#s′θ implies ∆ ` a#s′ϑµ. As µ cannot eliminate any incon-
sistency in “a#s′ϑ”, then ∆ ` a#s′ϑ.

By Lemma 3.12, as 〈_#_〉sol is complete, so 〈a#s′ϑ〉sol = (∇2, T rue).

Thus, the algorithm computes unify([a]t′, [b]s′) = (∇1∇2, ϑ, T rue). To show that
(∇1∇2, ϑ) ≤ (∆, θ), we only need to see that ∆ ` ∇2µ. Finally, since (∇2, T rue) =
〈a#s′ϑ〉sol and ∆ ` a#s′ϑµ, then the result follows by Lemma 3.12.

Example 3.22. The notions of β and η-reduction for the λ-calculus can be defined using
a nominal rewriting system [Fernández and Gabbay, 2007]. The formal notion of nominal
rewriting will be introduced in the next chapter as well. In this example, the signature
contains term-formers λ of arity 1, and app and subst of arity 2. Below, application is
denoted by juxtaposition and subst([a]X, Y) is written X[a 7→ Y] as usual (syntactic
sugar). Freshness contexts are used in rewrite rules to express conditions on the matching

38

substitutions used to generate the rewrite relation.

(Beta) ` (λ[a]X)Y → X[a 7→ Y]
(Eta) b#Z ` λ[b](Z b) → Z

(σapp) ` (XX ′)[a 7→ Y] → X[a 7→ Y]X ′[a 7→ Y]
(σvar) ` a[a 7→ X] → X

(σlam) b#Y ` (λ[b]X)[a 7→ Y] → λ[b](X[a 7→ Y])
(σε) a#X ` X[a 7→ Y] → X

To analyse one of the overlaps between (Beta) and (Eta), we can compute
unify((λ[a]X)Y, Z b) = (∅, [Y 7→ b][Z 7→ λ[a]X], T rue) and apply the resulting substi-
tution to the freshness context {b#Z}, obtainig ({b#X}, T rue). In the case that the
version a#Z ` λ[a](Z a)→ Z of (Eta) is chosen, then the solution of unify((λ[a]X)Y, Z a)
is (∅, [Y 7→ a][Z 7→ λ[a]X], T rue) and 〈{a#Z}[Y 7→ a][Z 7→ λ[a]X]〉sol = (∅, T rue).

39

Chapter 4

Ambiguity of Nominal Rules

In Chapter 3, we focused on the formalisation of properties related to unification modulo
α-equality, i.e., the process of finding a substitution that makes two terms “equal” with
respect to ≈α. On the other side, we may think under an equational reasoning, where sets
of nominal axioms give rise to theories of equality for nominal terms. When introducing
a rewrite theory that presents a nominal algebra, the semantical equality between terms
can be analysed by verifying their normal forms in the rewriting system whenever it is
terminating and confluent. That occurs because, under these two premises, equivalent
elements have a unique normal form in such rewrite theory. This relation of nominal
rewriting and nominal algebra is well explored in [Fernández and Gabbay, 2010].

This way, termination and confluence are essential properties to be explored because,
despite their undecidability, there are conditions under which they can be guaranteed.
In this chapter, our attention is devoted to investigate some criteria that ensure (local)
confluence in nominal rewrite theories by examining overlaps of nominal rewrite rules.
The differences regarding the same criteria in TRS’s will be highlighted.

4.1 Nominal Rewriting

This section introduces the main concepts related with nominal rewriting, including the
nominal rewriting relation itself, confluence, closedness of terms in context and rules and
the closed rewriting relation. In the next chapter, another notion of typed rewriting
relation will be introduced.

Definition 19 A rewrite judgement is a tuple ∇ ` l→ r of a freshness context
and two terms. We may write ‘∅ `’ as ‘`’.

A rewrite theory R = (Σ,Rw) is a pair of a signature Σ and a possibly infinite
set of rewrite judgements Rw in that signature; we call these rewrite rules.

40

A rewrite rule ∇ ` l→ r is left-linear if each unknown occurs at most once in
l.

The Example 3.22 at the end of the previous chapter is a set of left-linear rewrite
rules.

The equivariant closure of a set of rules defined next is needed to generate the rewrite
relation (Definition 21; see [Fernández and Gabbay, 2007, Fernández and Gabbay, 2010]
for more details).

Definition 20 The equivariant closure of a set Rw of rewrite rules is the closure
of Rw by the meta-action of permutations, that is, it is the set of all the permutative
variants of rules in Rw. We write eq-closure(Rw) for the equivariant closure of Rw.

Below we write ∆ ` (φ1, . . . , φn) for the judgements ∆ ` φ1, . . . , ∆ ` φn.

Definition 21 Nominal rewriting: Let R = (Σ,Rw) be a rewrite theory. The
one-step rewrite relation ∆ ` s

R→ t is the least relation such that for every
(∇ ` l→ r) ∈ Rw, position p, permutation π, and substitution θ,

∆ `
(
π∇θ, s|p ≈α πlθ, s[p←πrθ] ≈α t

)
∆ ` s R→ t

(Rew∇`l→r)

The notation ∆ ` s →〈R,p,π,θ〉 t highlights the fact that the rewrite step from s

to t occurs with some specific rule R, position p, permutation π and substitution θ,
under the freshness context ∆.

The rewrite relation ∆ `R s → t is the reflexive transitive closure of the one-
step rewrite relation, that is, the least relation that includes the one-step rewrite
relation and such that:

• for all ∆ and s: ∆ ` s ≈α s′ implies ∆ `R s→ s′; and

• for all ∆, s, t, u: ∆ `R s→ t and ∆ `R t→ u implies ∆ `R s→ u.

If ∆ `R s→ t holds, we say that s rewrites to t in the context ∆.

The rewrite relation is defined in a freshness context since it takes into account α-
equivalence, which depends on freshness information for the term unknowns.

41

Example 4.1. Here some rules of the Example 3.22 are recalled. In the following rewrite
theory, we can derive `R (λ[a]a)Y → Y and also a#Z `R (λ[a]Z)Y → Z.

(Beta) ` (λ[a]X)Y → X[a 7→ Y]
(σapp) ` (XX ′)[a 7→ Y] → X[a 7→ Y]X ′[a 7→ Y]
(σvar) ` a[a 7→ X] → X

(σlam) b#Y ` (λ[b]X)[a 7→ Y] → λ[b](X[a 7→ Y])
(σε) a#X ` X[a 7→ Y] → X

Definition 22 A rewrite theory R is terminating if there are no infinite rewriting
sequences, i.e., there is no term in context from which infinite rewriting steps can
be performed. It is locally confluent if ∆ ` s R→ u and ∆ ` s R→ v implies that
there exists w such that ∆ `R u → w and ∆ `R v → w. It is confluent when,
if ∆ `R s → t and ∆ `R s → t′, then there exists u such that ∆ `R t → u and
∆ `R t

′ → u.
We call the situation ∆ ` s R→ u and ∆ ` s R→ v a peak.

Remark 4.2. Since the definition of the rewriting relation generated by a rewrite theory
R = (Σ,Rw) takes into account permuted variants of rules (via the use of the permuta-
tion π in the one-step rewrite relation, see Definition 21), it is not necessary to include
permuted variants of rules in Rw. For convenience, in the rest of the thesis we assume
that for any R ∈ Rw, if R and πR are both in Rw then π = id; in other words, Rw does
not contain permuted variants of the same rule.

According to Definition 21, to generate a rewrite step we need to solve an equiv-
ariant matching problem, that is, we need to find a permutation and a substitution
such that ∆ ` s|p ≈α πlθ. This problem is decidable, but exponential over the num-
ber of different atoms of the terms in context [Cheney, 2004]. However, for closed
rules [Fernández and Gabbay, 2007], a simpler matching problem of the form ∆ ` s|p ≈α
lθ, called nominal matching [Urban et al., 2004], suffices to generate the rewrite relation.
Nominal matching is decidable and unitary [Urban et al., 2004] and efficient (it can be
solved in linear time [Calvès and Fernández, 2010, Calvès, 2010]).

Closed rules roughly correspond to rules without free atoms, where rewriting cannot
change the binding status of an atom. They are the counterpart of rules in standard
higher-order rewriting formats (see [Domínguez and Fernández, 2014]). Below we first

42

recall the definition of nominal matching and then give a structural definition and an
operational characterisation of closed terms.

Definition 23 A term-in-context is a pair ∆ ` s of a freshness context and a
term. A nominal matching problem is a pair of terms-in-context

(∇ ` l) ?≈ (∆ ` s) where unkn(∇ ` l) ∩ unkn(∆ ` s) = ∅.

A solution to this problem is a substitution θ such that ∆ ` ∇θ, ∆ ` lθ ≈α s, and
dom(θ) ⊆ unkn(∇ ` l).

The following structural definition of closedness follows [Clouston, 2007] and
[Domínguez and Fernández, 2014].

Definition 24 Call a term-in-context ∆ ` t closed when

1. every occurrence of an atom subterm a in t is under an abstraction of a;

2. if π ·X occurs under an abstraction of π ·a then any occurrence of π′ ·X occurs
under an abstraction of π′ · a or a#X ∈ ∆;

3. for any pair π1 · X, π2 · X occurring in t, and a ∈ ds(π1, π2), if neither π1 · X
nor π2 ·X occurs in the scope of an abstraction of π1 · a or π2 · a, respectively,
then a#X ∈ ∆.

Call R = (∇ ` l→ r) closed when ∇ ` (l, r) is closed.1

It is easy to check whether a term is closed, using nominal matching and a freshened
variant of the term [Fernández and Gabbay, 2007] (see Proposition 4.3 below).

Definition 25 A freshened variant t N of a nominal term t is a term with the
same structure as t, except that the atoms and unknowns are replaced by ‘fresh’
atoms and unknowns with respect to t and to some atoms and unknowns from other
syntax, which must always be specified. We omit an inductive definition.

Similarly, if ∇ is a freshness context then ∇ Ndenotes a freshened variant of ∇,
i.e., if a#X ∈ ∇ then a N#X N∈ ∇ N, where a Nand X Nare chosen fresh for the atoms
and unknowns appearing in ∇.

We may extend this to other syntax, like equality and rewrite judgements.
Note that if ∇ N` l N→ r N is a freshened variant of ∇ ` l → r then unkn(∇ N`

l N→ r N) ∩ unkn(∇ ` l→ r) = ∅.

43

Proposition 4.3. A term-in-context ∇ ` l is closed if, and only if, there exists a solution
for the matching problem

(∇ N` l N) ?≈ (∇, atms(∇ N, l N)#unkn(∇, l) ` l). (4.1)

Due to the link between closedness of terms-in-context and solvability of a nominal
matching problem, made explicit by the proposition above, the definition of closed rewrit-
ing (Definition 26) is based on nominal matching instead of using equivariant matching
as in Definition 21.

Definition 26 Given a rewrite rule R = (∇ ` l→ r) and a term-in-context ∆ ` s,
write ∆ ` s R→c t when there is some R Na freshened variant of R (so, fresh for R, ∆,
s, and t), position p and substitution θ such that

∆, atms(R N) # unkn(∆, s, t) ` (∇ Nθ, s|p≈αl Nθ, s[p←r Nθ]≈αt). (4.2)

We call this (one-step) closed rewriting.
The closed rewrite relation ∆ `R s →c t is the reflexive transitive closure of

the one-step closed rewrite relation.

The previous definition is similar to Definition 21, but notice that the freshness context
is extended.

Example 4.4. Any rule with free atoms, such as ` f(a, a) → a, is not closed (it is
impossible to match it with a freshened variant). The rule R = ` [a]f(a,X) → 0 is
closed, since taking a freshened version R N = ` [b]f(b, Y) → 0, it is possible to solve the
matching problem (` ([b]f(b, Y), 0)) ?≈ (b#X ` ([a]f(a,X), 0)) with the substitution
θ = [Y 7→ (a b) ·X]. Notice that b#X ` [b]f(b, (a b) ·X) ≈α [a]f(a,X).

We refer to [Fernández and Gabbay, 2007, Fernández and Gabbay, 2010] for more ex-
amples and properties of closed rewriting.

To compute overlaps of rules, a nominal unification algorithm may be used, as explored
in Chapter 3.

Definition 27 A nominal unification problem is a set of freshness constraints
and pairs of terms, written {a1#t1, . . . , ak#tk, s1 ?≈? u1, . . . , sm ?≈? um}. It is unifi-
able if there exists a solution 〈Γ, θ〉 (freshness context and substitution) such that
Γ ` (a1#t1θ, . . . , ak#tkθ, s1θ ≈α u1θ, . . . , smθ ≈α umθ). In this case, 〈Γ, θ〉 is said to
be a unifier for the problem.

44

Compare this definition to Definition 14, where unification problems are defined only
for equational constraints. In Definitions 16 and 13, there are algorithms to solve equality
and freshness problems for a unification problem respectively.

4.2 Confluence of Nominal Rewriting

In this section we consider two well-known criteria for confluence of first-order rewriting
based on the notion of overlapping rewrite steps [Baader and Nipkow, 1998]. They can
be extended to nominal rewrite theories, but it is necessary to add some conditions.

4.2.1 Critical Pair Criterion and Orthogonality

The notion of overlap has been extended from the first-order setting to the nominal rewrit-
ing setting [Fernández and Gabbay, 2007]. In the first-order case, overlaps are computed
by unification of a left-hand side of a rule R1 with a non-variable subterm of the left-hand
side of a rule R2 (which could be a copy of R1 with renamed variables, in which case
the subterm must be strict, that is, overlaps at the root between a left-hand side and its
copy are not considered). With nominal rules the nominal rewrite relation is generated
by the equivariant closure of a set of rules (see Definitions 20 and 21) so we must consider
permuted variants of rules, and use nominal unification instead of first-order unification.
This is Definition 28, which follows [Fernández and Gabbay, 2007]:

Definition 28 (Overlaps and CPs) Let Ri = ∇i ` li → ri (i = 1, 2) be copies
of rewrite rules in eq-closure(Rw) (so R1 and R2 could be copies of the same rule),
where unkn(R1) ∩ unkn(R2) = ∅, as usual. If the nominal unification problem
∇1 ∪ ∇2 ∪ {l2 ?≈? l1|p} has a most general solution 〈Γ, θ〉 for some position p, then
we say that R1 overlaps with R2, and we call the pair of terms-in-context Γ `
(r1θ, l1θ[p←r2θ]) a critical pair. If p is a variable position, or if R1 and R2 are
identical modulo renaming of variables and p = ε, then we call the overlap and
critical pair trivial, otherwise we call it non-trivial.

The critical pair Γ ` (r1θ, l1θ[p←r2θ]) is joinable if there is a term u such that
Γ `R r1θ → u and Γ `R (l1θ[p←r2θ])→ u.

We distinguish between different kinds of overlaps and critical pairs:

Definition 29 (Permutative Overlaps and CPs) Let Ri = ∇i ` li → ri (i =
1, 2) be copies of rewrite rules in eq-closure(Rw), such that there is an overlap. If R2

is a copy of πR1, we say that the overlap is permutative. We call a permutative

45

overlap at the root position root-permutative. We call an overlap that is not trivial
and not root-permutative proper. We use the same terminology to classify critical
pairs; e.g. we call a critical pair generated by a permutative overlap permutative.

A permutative overlap indicates that there is a critical pair generated by a rule and
one of its permuted variants.

Note that only the root-permutative overlaps where π is id are trivial. While overlaps
at the root between variable-renamed versions of first-order rules can be discarded (they
generate equal terms), in nominal rewriting we must also consider overlaps at the root
between permuted variants of rules. Indeed, they do not necessarily produce the same
result, as the following example shows (see also [Suzuki et al., 2015]).

Example 4.5. Consider R = (` f(X) → f([a]X)). There is an overlap at the root
between this rule and its variant (a b)R = (` f(X) → f([b]X)), i.e., a root-permutative
overlap, which is not trivial. It generates the critical pair ` (f([a]X), f([b]X)). Note that
the terms f([a]X) and f([b]X) are not α-equivalent. This theory is not confluent; we have
for instance:

f(a)
〈R,ε,id,[X 7→a]〉

zz

〈R,ε,(a b),[X 7→a]〉

##

f([a]a) 6≈α f([b]a)

Definition 30 introduces uniformity. In [Fernández and Gabbay, 2007] a Critical Pair
Lemma was proved for uniform nominal rewrite theories, that joinability of non-trivial
critical pairs implies local confluence; confluence follows by Newman’s Lemma if the theory
is terminating. Uniformity features in this chapter in Theorem 4.6. Intuitively, uniformity
means that if a is not free in s and s rewrites to t then a is not free in t.

Definition 30 (Uniformity) We call a nominal rewrite theory R = (Σ,Rw) uni-
form [Fernández and Gabbay, 2007] when if ∆ `R s → t and ∆,∆′ ` a#s for some
∆′, then ∆,∆′ ` a#t.

Note that in the Critical Pair Lemma of [Fernández and Gabbay, 2007], joinability
is assumed for all non-trivial critical pairs. Joinability of proper critical pairs is insuf-
ficient for local confluence, even for a uniform theory: the rule in Example 4.5 is uni-
form. However, an additional condition allows us to prove that uniform rewrite theories
with joinable proper critical pairs are locally confluent. Recall the notion of α-stability

46

from [Suzuki et al., 2015]:

Definition 31 (α-stability) Call a rewrite rule R = ∇ ` l → r α-stable when,
for all ∆, π, θ, θ′, ∆ ` ∇θ, π∇θ′, lθ ≈α πlθ′ implies ∆ ` rθ ≈α πrθ′.

A rewrite theory R = (Σ,Rw) is α-stable if every rule in Rw is α-stable.

α-stability is hard to check in general because of the quantification over all θ and θ′.
α-stability is related to closedness (Definition 24): we show in Section 4.2.2 that closed
rules are α-stable. The reverse implication does not hold: for example ` f(a) → a is
α-stable but not closed.

Theorem 4.6 (Critical Pair Lemma for uniform α-stable theories). Let R = (Σ,Rw) be
a uniform rewrite theory where all the rewrite rules in Rw are α-stable. If every proper
critical pair is joinable, then R is locally confluent.

Proof. We consider cases. There are four kinds of peaks:

• If the rewrite steps occur at disjoint positions, then the peak is trivially joinable by
applying the same rules, permutations and substitutions.

• If the peak is an instance of a proper critical pair (joinable by assump-
tion), then it is joinable since rewriting is compatible with instantia-
tion [Fernández and Gabbay, 2007, Theorem 49].

• If the peak is generated by an overlap at a variable position, without loss of generality
assume ∇ ` s ≈α π1l1θ1 and s occurs inside π2l2θ2 under an instance of an unknown
(π2π ·X)θ2 (see Figure 4.1). Then we can change the action of θ2 over X, replacing
s by t, such that ∇ ` t ≈α π1r1θ1, as it is done in the first-order case. Here we rely
on uniformity to ensure that no free atoms are introduced by the rewrite step, so
freshness constraints are preserved when replacing s by t.

• If there is a root-permutative overlap then joinability follows by α-stability.

Definition 32 Call a rewrite theory R = (Σ,Rw) orthogonal when all the rules in
Rw are left-linear and there are no non-trivial critical pairs.

Call R = (Σ,Rw) quasi-orthogonal when all rules are left-linear and there are
no proper overlaps.

So orthogonal theories are left-linear and can have trivial overlaps only, whereas quasi-
orthogonal theories are left-linear and can have trivial overlaps and root-permutative
overlaps (Definition 29).

47

Figure 4.1: Critical Pair Lemma - case of overlap at a variable position

*

11

π
1σl

r
π2

σ
22

r
π2

σ
22
’

σ
2

π
π

.X2

2

π2
σ

2
l

r
1

π
1σ

1

σ
2

π
π

.X2 ’

...

...

l ’
2

π2
σ

2

... ’σ
2

π2
∆

∆

2

R

11

π
1σl

π
1σ

1
∆

∆

1

π
1σ

1
∆

∆

1

π
1σ

1
∆

∆

1

σ
2

π2
∆

∆

2

...

...

(by uniformity)

R

R

R

*

R

Orthogonal theories were defined in [Fernández and Gabbay, 2007]. Quasi-orthogonal
theories were defined in [Suzuki et al., 2015] and called orthogonal (we changed the name
here to avoid confusion). Orthogonality implies confluence for uniform nominal rewrite
theories [Fernández and Gabbay, 2007]. Quasi-orthogonality is insufficient for confluence
of uniform theories; see Example 4.5. If a theory is uniform, quasi-orthogonal, and α-
stable, then it is confluent [Suzuki et al., 2015].

4.2.2 Criterion for α-stability

This section presents closedness as a sufficient condition for α-stability. Closedness is easy
to check using a nominal matching algorithm (see Proposition 4.3).

An easy technical lemma will be useful, that substitutions that coincide modulo α on
the unknowns in a term yield α-equivalent instances, and vice-versa (i.e., if the instances
are α-equivalent, the substitutions must coincide modulo α on the unknowns of the term):

Lemma 4.7. ∆ ` tθ ≈α tθ′ ⇔ ∀X ∈ unkn(t).∆ ` Xθ ≈α Xθ′.

The direction (⇐) of Lemma 4.7 is a particularisation of Lemma 3.19 because only
the variables in t are required to have the same image by both substitutions. It is also
available in [Fernández and Gabbay, 2010] (Lemma 5.12).

48

Theorem 4.8. If R is a closed rule, then R is α-stable.

Proof. It is sufficient to prove the following property: R = ∇ ` l → r closed, ∆ ` s ≈α
lϑ→ rϑ and ∆ ` s ≈α πlϑ′ → πrϑ′ imply ∆ ` rϑ ≈α πrϑ′.

The matching problems (∇ N` (l N, r N)) ?≈ (∇, atms(R N)#unkn(R) ` (l, r)) and (∇ N`
(l N, r N)) ?≈ (π∇, atms(R N)#unkn(R) ` (πl, πr)) are solvable with solutions θ and πθ,
respectively, insofar as R is closed. Hence, we can infer:

• ∇, atms(R N)#unkn(R) ` ∇ Nθ, (l Nθ, r Nθ) ≈α (l, r)

• π∇, atms(R N)#unkn(R) ` ∇ Nπθ, (l Nπθ, r Nπθ) ≈α (πl, πr)

• ∆ ` ∇ϑ, π∇ϑ′, lϑ ≈α πlϑ′ =⇒ ∆, atms(R N)#unkn(Rϑ) ` l Nθϑ ≈α l Nπθϑ′

From Lemma 4.7 (⇒), it follows that ∀X ∈ unkn(l N) : ∆, atms(R N)#unkn(Rϑ) `
Xθϑ ≈α Xπθϑ′.

Since unkn(r N) ⊆ unkn(l N), Lemma 4.7 (⇐) can be used to demonstrate the equiva-
lences

∆, atms(R N)#unkn(Rϑ) ` r Nθϑ ≈α rϑ, r Nπθϑ′ ≈α πrϑ′, r Nθϑ ≈α r Nπθϑ′

and, finally, ∆, atms(R N)#unkn(Rϑ) ` rϑ ≈α πrϑ′ is obtained by transitivity. Notice
that atoms in atms(R N) do not appear in rϑ, πrϑ′, so that the previous judgement can be
strengthened taking only ∆ as context.

4.3 Better Criteria for Confluence of Closed Rewrit-
ing

In this section we study confluence of closed rewriting (Definition 26). Closed rewriting
uses freshened versions of rules and nominal matching, instead of the computationally
more expensive equivariant matching used in Definition 21. Closed rewriting is complete
for equational reasoning if the axioms are closed [Fernández and Gabbay, 2010].

The following three lemmas state properties of closed rules and closed rewriting, and
will be useful for Theorems 4.12 and 4.14. The first two state that if a rule has no free
atoms then its freshness context can be extended to obtain a closed rule, and closed
rewriting with either rule is equivalent. The third lemma states that a rule with free
atoms generates an empty closed rewriting relation.

Lemma 4.9. Let R = ∇ ` l → r be a rule such that every occurrence of an atom
subterm a in l or r is under the scope of an abstraction of a (i.e., no atom occurs free as

49

a subterm in R). Then there exists a minimal context ∆ ⊆ atms(R)#unkn(R) such that
∆,∇ ` l→ r is closed.

Proof. By definition of closed term (see Definition 24), we must check:

1. Every occurrence of an atom subterm a is under an abstraction of a.

2. If π ·X occurs under an abstraction of π · a, then any occurrence of π′ ·X is in the
scope of an abstraction of π′ · a or a#X ∈ ∇ ∪∆.

3. For any pair π1 ·X, π2 ·X occurring in R and a ∈ ds(π1, π2), if π1 · a and π1 · a are
not abstracted over the respective occurrences of X, then a#X ∈ ∇ ∪∆ .

The first point holds by assumption. For the second and third points, if a#X 6∈ ∇ it is
sufficient to include a#X in ∆.

Lemma 4.10. Suppose R = ∇ ` l → r and R′ = ∆,∇ ` l → r are rules such that R
has no free atom-subterms and ∆ ⊆ atms(R)#unkn(R) is the minimal set of freshness
constraints that makes R′ closed. Then, Γ ` s R→c t ⇔ Γ ` s R′→c t.

Proof. The left-to-right direction. If Γ ` s R→c t, then Γ, atms(R N)#unkn(Γ, s, t) ` s R N

→
t, i.e., there is θ such that

Γ, atms(R N)#unkn(Γ, s, t) ` s|p ≈α l Nθ, t ≈α s[p←r Nθ],∇ Nθ.

Since atms(R) = atms(R′), it suffices to show that Γ, atms(R N)#unkn(Γ, s, t) ` ∆ Nθ to
obtain Γ, atms(R N)#unkn(Γ, s, t) ` s R′ N

→ t as required.
To prove Γ, atms(R N)#unkn(Γ, s, t) ` ∆ Nθ, observe that a N#X N is in ∆ N if π N

1 ·X Nand
π N

2 ·X Noccur in (l N, r N) and at least one of the following holds:

• π N
1 · a N is abstracted over π N

1 ·X Nand π N
2 · a N is not abstracted over π N

2 ·X N. We know

Γ, atms(R N)#unkn(Γ, s, t) ` π N
2 · a N#(s|p, t|p), (s|p, t|p) ≈α (l Nθ, r Nθ).

Then, since π N
2 · a N is not abstracted over π N

2 ·X N, the same freshness context allows
us to derive π N

2 · a N#π N
2 ·X Nθ and, consequently, a N#X Nθ.

• a N is in ds(π N
1, π

N
2) and neither π N

1 · a Nnor π N
2 · a Nare abstracted over the respective

occurrences of X N. The same argument is valid in this case.

The right-to-left direction. If Γ ` s R′→c t, then Γ, atms(R N)#unkn(Γ, s, t) ` s R′ N

→ t,
i.e., there is θ such that

Γ, atms(R′ N)#unkn(Γ, s, t) ` s|p ≈α l Nθ, t ≈α s[p←r Nθ],∇ Nθ,∆ Nθ.

50

So atms(R) = atms(R′). It follows that Γ, atms(R N)#unkn(Γ, s, t) ` s R N

→ t.

Lemma 4.11. Suppose R = ∇ ` l → r is a nominal rule and there exist ∆, s, t and a
closed-rewriting step ∆ ` s R→c t. Then every occurrence of an atom subterm a in l or r
is under an abstraction of a (i.e., no atom occurs free as a subterm in R).

Proof. By contradiction. Assume R has a free atom subterm a; without loss of generality,
we assume l|q = a (if it occurs in r we reason in the same way). By definition of closed-
rewriting, there exists R N, a fresh variant of R, such that ∆, atms(R N)#unkn(∆, s, t) `
s|p ≈α l Nθ, t ≈α s[p←r Nθ],∇ Nθ. But l N|q = a N is free, and a Ndoes not occur in s, contra-
dicting ∆, atms(R N)#unkn(∆, s, t) ` s|p ≈α l Nθ.

The following definitions of fresh overlap and fresh critical pair will be used to derive
sufficient conditions for confluence of closed rewriting.

Definition 33 (Fresh Overlaps and CPs) Let Ri = ∇i ` li → ri (i = 1, 2) be
freshened versions of rewrite rules in Rw (R1 andR2 could be two freshened versions of
the same rule), where unkn(R1)∩unkn(R2) = ∅, as usual. If the nominal unification
problem ∇1∪∇2∪{l2 ?≈? l1|p} has a most general solution 〈Γ, θ〉 for some position p,
then we say that R1 fresh overlaps with R2, and we call the pair of terms-in-context
Γ ` (r1θ, l1θ[p←r2θ]) a fresh critical pair.

If p is a variable position, or if R1 and R2 are equal modulo renaming of variables
and p = ε, then we call the overlap and critical pair trivial.

If R1 and R2 are freshened versions of the same rule and p = ε, then we call the
overlap and critical pair fresh root-permutative.

A fresh overlap (resp. fresh critical pair) that is not trivial and not root-
permutative is proper.

The fresh critical pair Γ ` (r1θ, l1θ[p←r2θ]) is joinable if there is a term u such
that Γ `R r1θ →c u and Γ `R (l1θ[p←r2θ])→c u.

Definition 34 Call a rewrite theory R = (Σ,Rw) fresh quasi-orthogonal when
all rules are left-linear and there are no proper fresh critical pairs.

Theorem 4.12 (Critical Pair Lemma for Closed Rewriting).
Let R = (Σ, Rw) be a rewrite theory where every proper fresh critical pair is joinable.
Then the closed rewriting relation generated by R is locally confluent.

51

Proof. Since rules with free atom-subterms do not generate closed rewriting steps
(Lemma 4.11), without loss of generality we can assume that the rules in Rw do not
have free atom-subterms. Consider R′ = (Σ, Rw′) the closed rewrite theory obtained by
extending the freshness contexts of rules in Rw, as described in Lemma 4.9. Then, by
Lemma 4.10, the closed rewriting relation generated by R is equivalent to the one gener-
ated by R′. Thus, joinability of proper fresh critical pairs in R implies joinability of proper
fresh critical pairs in R′ and it suffices to prove local confluence for the closed rewriting
relation generated by R′. Also note that since all rules in Rw′ are closed, they are uniform
and α-stable (Theorem 4.8).

We consider the kinds of peaks that may arise:

• If the rewrite steps defining the peak occur at disjoint positions then the peak is
trivially joinable by applying the same rules and substitutions.

• If the peak is generated by an overlap at a variable position then consider R1 = ∇ N
1 `

l N
1 → r N

1 and R2 = ∇ N
2 ` l N

2 → r N
2 freshened versions of two rules (see Figure 4.1, but

here we do not need permuted versions for the rules are already freshened). Let ∆
be the context used to rewrite l N

2θ2 with R1 and R2. Without loss of generality, we
assume ∆, atms(R1)#unkn(∆, s) ` ∇ N

1θ1, s ≈α l N
1θ1, t ≈α r N

1θ1 and s occurs inside
l N
2θ2 under an instance of an unknown (π N· X N)θ2. Then we can change the action
of θ2 over X N, replacing s by t, such that ∇1 ` t ≈α π1r1θ1, as it is done in the
first-order case. Here we rely on the assumption of uniformity, which ensures that
no free atoms are introduced by the rewrite step, therefore no freshness constraint
will be violated when replacing s by t.

• If there are freshened rules R1 = ∇ N
1 ` l N

1 → r N
1 and R2 = ∇ N

2 ` l N
2 → r N

2 and a term-
in-context ∆ ` s, such that there is a rewrite step at position p1 in s using R1 and
at position p2 using R2 then ∆,Γ1 ` ∇ N

1θ, l
N

1θ ≈α s|p1 and ∆,Γ2 ` ∇ N
2θ
′, l N

2θ
′ ≈α s|p2 .

Without loss of generality we assume that p2 = p1q. Since the sets of vari-
ables in the freshened rules are disjoint, without loss of generality we can as-
sume dom(θ) ∩ dom(θ′) = ∅, and define the substitution ϑ = θ ◦ θ′ such that
dom(ϑ) = dom(θ) ∪ dom(θ′). Then, ∆,Γ1,Γ2 ` ∇ N

1ϑ,∇ N
2ϑ, l

N
1|qϑ ≈α l N

2ϑ. Therefore
the unification problem ∇ N

1,∇ N
2, l

N
1|q ?≈? l

N
2 has a solution. Hence, by Definition 33,

there is a fresh critical pair between R1 and R2. Observe that, if q = ε and R1 is
a permuted copy of R2 (equal or not), then the terms of divergence t1 and t2 are
α-equivalent by triviality or α-stability. If the critical pair is proper it is joinable by
assumption. Therefore the peak is joinable since the rewriting relation is compatible
with instantiation [Fernández and Gabbay, 2007, Theorem 49].

52

Since it is sufficient to consider just one freshened version of each rule when computing
overlaps of closed rules, the number of fresh critical pairs for a rewrite theory with a finite
number of rules is finite. Thus, Theorem 4.12 provides an effective criterion for local
confluence, similar to the criterion for first-order systems.

We can deduce from Theorem 4.12 that the closed rewriting relation for the closed
theory defining explicit substitution in Example 4.1 (i.e., all the rules except Beta) is
locally confluent: every proper fresh critical pair is joinable. If we consider also the rule
(Beta) then the system is not locally confluent. This does not contradict the previous
theorem, because there is a proper fresh critical pair between (Beta) and (σapp), obtained
from ∅ ` ((λ[a]X)Y)[b 7→ Z], which is not joinable:

∅ ` (((λ[a]X)[b 7→ Z])(Y [b 7→ Z]), (X[a 7→ Y])[b 7→ Z]).

Next we consider criteria for confluence based on (quasi-) orthogonality. The following
lemma is used in the proof of confluence.

Lemma 4.13. Let R = (Σ,Rw) be a closed rewrite theory.
∆ `R s →c t if, and only if, there exist R1, . . . , Rn ∈ Rw such that
∆, atms(R N

1, . . . , R
N
n)#unkn(∆, s) `R s→ t.

Proof. In both directions, the proof is by induction on the number of steps in ∆ `R s→c t

and ∆, atms(R N
1, . . . , R

N
n)#unkn(∆, s) `R s → t, respectively. From left to right, the

result follows by definition of closed rewriting. In the other direction, it is necessary
to consider closedness of rules. Any version of R ∈ Rw can be used in one step
∆, atms(R N

1, . . . , R
N
n)#unkn(∆, s) ` s R→ v. So, the version R N freshened with respect to

∆, atms(R N
1, . . . , R

N
n) and all the terms in the rewrite sequence could be taken in this step.

Weakening the freshness context, ∆, atms(R N
1, . . . , R

N
n, R

N)#unkn(∆, s) ` s R→ v is ob-
tained. Since the atoms of R N

1, . . . , R
N
n do not occur in ∆, R Nand in the terms of the rewrite

sequence, the freshness context can be strengthened into ∆, atms(R N)#unkn(∆, s) ` s R→
v. Thus, ∆ ` s R→c v is reached.

Theorem 4.14. If R is a fresh quasi-orthogonal rewrite theory, then the closed rewriting
relation generated by R is confluent.

Proof. As in the previous theorem, we prove confluence for the closed rewriting relation
generated by R′ = (Σ, Rw′), where Rw′ is obtained by extending the freshness contexts
to close the rules of Rw which do not have free atom-subterms (see Lemmas 4.11, 4.9 and
4.10). Since all rules in Rw′ are closed, they are also uniform and α-stable.

Now we can proceed in the usual way (see, e.g., [Baader and Nipkow, 1998,
Rocha-Oliveira and Ayala-Rincón, 2012, Fernández and Gabbay, 2007]), by proving the

53

diamond property for a parallel closed-rewriting relation (simultaneous closed rewriting
steps at disjoint positions). The proof proceeds by analysis of peaks: When overlaps
occur under instances of variables, we use uniformity to ensure that when we change the
substitution, the rewrite step is still possible. Joinability of root-permutative overlaps is
a consequence of α-stability for the rules are closed.

Alternatively, we can prove confluence by reducing to a previous result for stan-
dard nominal rewriting, using the previous lemma: Consider a peak ∆ `R′ s →c t

and ∆ `R′ s →c v. By Lemma 4.13 (⇒), there exist R1, . . . , Rn ∈ Rw′ such that
∆, atms(R N

1, . . . , R
N
n)#unkn(∆, s) `R′ s → t and ∆, atms(R N

1, . . . , R
N
n)#unkn(∆, s) `R′

s → v. Theorem 28 of [Suzuki et al., 2015] guarantees confluence with the context
∆, atms(R N

1, . . . , R
N
n)#unkn(∆, s), since for closed theories our notion of fresh-quasi-

orthogonality coincides with the notion of orthogonality defined in [Suzuki et al., 2015]
(in this case, it does not matter which permuted version is used to obtain a proper critical
pair). Using Lemma 4.13(⇐), we obtain confluence of ∆ ` _ R′→c _.

Example 4.15. Consider a signature for first-order logic, with term-formers ¬, ∀ and ∃
of arity 1, and ∧,∨ of arity 2 (as usual we write them infix). The following closed rules
can be used to simplify formulas:

` ¬(X ∧ Y)→ ¬(X) ∨ ¬(Y) and b#X ` ¬(∀[a]X)→ ∃[b]¬((b a) ·X).

Why write ∃[b]¬((b a) ·X) on the right-hand side above, instead of the α-equivalent
∃[a]¬(X)? We could: these are equivalent—in a nominal context. The version above
directly translates the corresponding CRS rule (see [Domínguez and Fernández, 2014])
which, following Barendregt’s convention, must use different names for bound variables
in a rule. Theorem 4.14 tells us that the closed rewriting relation generated by the theory
in Example 4.15 is confluent. This theory is closed, but forbidden by ASP restrictions
because of the permutation (b a) on the right-hand side.

The criteria for local confluence given in Theorem 4.12 and for confluence given in
Theorem 4.14 for closed rewriting are easy to check using a nominal unification algo-
rithm: just compute overlaps for the set of rules obtained by taking one freshened copy of
each given rule. For comparison, the criteria given in [Fernández and Gabbay, 2007] and
[Suzuki et al., 2015] require the computation of critical pairs for permutative variants of
rules, which needs equivariant unification (exponential). Theorems 4.12 and 4.14 apply
even if the rules are not closed, as long as we use closed rewriting. Consider the uniform
rules ` f(a) → 0 and ` g(f(b)) → 0. These rules have no non-trivial fresh overlap, and
closed rewriting is confluent, but the standard rewriting relation is not confluent, since

54

the term g(f(a)) rewrites to both g(0) and 0. Using closed rewriting, the term g(f(a)) is
a normal form.

55

Chapter 5

Nominal Essential Intersection Types

The Essential Intersection Type System in the context of the λ-calculus was explored in
[van Bakel, 1995], stating the main advantages with respect to the BCD Intersection Type
System. They include the fact that the set of typings assignable to a term is a proper
subset with respect to the set in the BCD system and the direct relationship between
terms and skeletons of type derivations. Beside that, the Essential System presents the
closedness of typability under η-reduction, unlike the Strict Intersection Type System
presented in [van Bakel, 1992].

The syntax for nominal types used here was inspired by the Essential Intersection Type
System presented in [van Bakel and Fernández, 1997], where the system assigns types to
first-order terms. There, only sorts of types, variables and arrow types are considered
and, as in Definition 2, the arity of function symbols is fixed. Here, we extend it with
abstraction types and allow type constructors to have arguments.

In this chapter, we present an Intersection Type System satisfying some basic prop-
erties; as expected, it was proved the equivariance of type derivations (renaming with
permutations), invariance of typings for α-equivalent terms and subject reduction.

5.1 Types, ordering and operations

The next definition introduces the set of types considered in this chapter.

Definition 35 Let C,V be a set of type constructors, each one with a fixed arity,
and a countably infinite set of type variables, respectively. The set Ts is defined
containing the strict types, which are generated by:

τ ::= ϕ | τ1 ∩ · · · ∩ τk → τ | [τ1 ∩ · · · ∩ τk]τ | C(τ1, . . . , τn),

56

where ϕ ∈ V , C ∈ C and n is the arity of C and k might be possibly 0. Define TS as
the set of intersection types, which are built using types in Ts as

σ ::= τ1 ∩ · · · ∩ τk, k ≥ 0.

The symbol ω represents the intersection of zero strict types.

Notation. ⋂ni=1 τi ∈ TS whenever τi ∈ Ts and, in particular, for n = 1, ⋂ni=1 τi ∈ Ts. The
set V ars(σ) contains ϕ ∈ V that occurs in σ.

In this chapter, we extend the signature of terms as presented in Definition 2. A
functional symbol f ∈ Σ is accompanied by its arity n ≥ 0 and a type declaration
denoted by Σf , which is any type in TS.

Notice that, in this grammar of types, we add a structure for abstraction types with
respect to the one in [van Bakel and Fernández, 1997]. In essence, these types behave as
arrow types in the sense that contravariance in the “domain” is supposed when comparing
arrow types as well as abstraction types (cf. Table 5.1) and intersections immediately in
the right-hand side are prohibited for both.

Example 5.1. Let Π be a ternary symbol of a signature Σ and [nat]ϕ→ nat→ nat→ ϕ

be the type declaration of Π. Consider ∏k
i=nX the syntactic sugar of ∏([i]X,n, k). This

type declaration is supposed to enforce the first argument of Π to be an abstraction type
and the second and third ones to be naturals. The type ϕ must be the resulting type of
a term that is a full instance of Π respecting the declaration.

Definition 36 A type environment Γ is a finite set of type annotations of
the form X : σ or a : σ, where each X/a appears only in one annotation. The type
annotations of X and a in Γ are denoted by ΓX and Γa, respectively.

The connective on represents an updating in an environment Γ. In this way, if
a and X are not annotated in Γ, then Γ on a : σ and Γ on X : σ denote Γ ∪ {a : σ}
and Γ ∪ {X : σ}, respectively. Otherwise, they respectively denote Γ \ Γa ∪ {a : σ}
and Γ \ ΓX ∪ {X : σ}.

The meta-action of permutation (Definition 5) can be extended to environments: πΓ =
{π(a) : Γa | a ∈ Γ} ∪ {X : ΓX | X ∈ Γ}.

Pairs 〈Γ, σ〉 of an environment Γ and a type σ will be called typings with respect to a
term, whose definition will be introduced formally in Definition 41. In Table 5.1, a partial
order is defined for types, environments and this kind of pairs.

The lemma that follows is taken from [Kamareddine and Nour, 2007], where the dif-
ference between our types and theirs is the presence of abstraction types here. Since, the

57

Table 5.1: Relation ≤ between types

(≤∩E) τ1 ∩ · · · ∩ τn ≤ τi ,∀n ≥ 1
bola

(≤Trans)
σ ≤ τ τ ≤ ρ

σ ≤ ρ
(≤abs)

σ ≤ γ ρ ≤ τ
[γ]ρ ≤ [σ]τ

(≤∩I)
σ ≤ τ1 . . . σ ≤ τn

σ ≤ τ1 ∩ · · · ∩ τn
(≤→)

σ ≤ γ ρ ≤ τ
γ → ρ ≤ σ → τ

(≤Γ)
∀y ∈ Γ : (y ∈ Φ) ∧ (Φy ≤ Γy) y ∈ A ∪ V

Φ ≤ Γ
(≤pair)

Γ′ ≤ Γ σ ≤ σ′

〈Γ, σ〉 ≤ 〈Γ′, σ′〉

ordering ≤ does not mix abstraction and arrow types in rules of Table 5.1 and both are
contravariant in the domain, the verification that the properties for “_ → _” hold for
“[_]_” is straightforward. These properties will be used in the next section.

Lemma 5.2 (≤-Inversion lemma [Kamareddine and Nour, 2007]). espaco

1. γ ≤ σ implies that γ = ⋂n
i=1 τi and σ = ⋂m

j=1 τ
′
j and, for all 1 ≤ j ≤ m, there exists

1 ≤ i ≤ n such that τi ≤ τ ′j.

2. [γ]τ ≤ σ implies that σ = ⋂n
i=1[γi]ρi, where γi ≤ γ and τ ≤ ρi for all 1 ≤ i ≤ n.

Now, some operations on types are introduced, namely lifting, substitution and expan-
sion. They are used in the next section similarly to the way they were originally presented
in [van Bakel and Fernández, 1997], while designating types for functional terms. Beyond
that, such operations are used to achieve typings of terms from a principal one. These
notions will be presented later in this chapter.

Definition 37 An operation of lifting L〈〈Γ,σ〉,〈Γ′,σ′〉〉 : TS → TS is defined by a pair
of pairs 〈〈Γ, σ〉, 〈Γ′, σ′〉〉 such that 〈Γ, σ〉 ≤ 〈Γ′, σ′〉, following the rules:

• L〈〈Γ,σ〉,〈Γ′,σ′〉〉(σ) = σ′,

• L〈〈Γ,σ〉,〈Γ′,σ′〉〉(γ) = γ, if σ 6= γ,

• L〈〈Γ,σ〉,〈Γ′,σ′〉〉(Φ) = Φ on {y : γ′ ∈ Γ′ | y : γ ∈ Γ ∩ Φ or y /∈ Γ ∪ Φ}, where
y ∈ A ∪ V,

• L〈〈Γ,σ〉,〈Γ′,σ′〉〉(〈Φ, γ〉) = 〈(L〈〈Γ,σ〉,〈Γ′,σ′〉〉(Φ)), (L〈〈Γ,σ〉,〈Γ′,σ′〉〉(γ))〉.

Observe that, if Φ = Γ, then L〈〈Γ,σ〉,〈Γ′,σ′〉〉(Γ) = Γ′.

58

Example 5.3. Consider L = L〈〈{X:ϕ1∩ϕ2},ϕ1∩ϕ2〉,〈{X:ϕ1∩ϕ2∩ϕ3},ϕ2〉〉. So, one can obtain a
lifted pair as follows on the pair below:

L(〈{X : ϕ1 ∩ ϕ2}, ϕ1 ∩ ϕ2〉) = 〈{X : ϕ1 ∩ ϕ2 ∩ ϕ3}, ϕ2〉

However, if the lifting is applied to some different environment, then the result may vary:

L({X : ϕ1 ∩ ϕ2, a : ρ}) = {X : ϕ1 ∩ ϕ2 ∩ ϕ3, a : ρ},

L(∅) = {X : ϕ1 ∩ ϕ2 ∩ ϕ3},

L({X : ϕ1 ∩ ϕ5}) = {X : ϕ1 ∩ ϕ5}.

In any case, we have an environment smaller than the original with respect to ≤.

Definition 38 A substitution (ϕ 7→ α) : TS → TS, where ϕ is a type variable and
α ∈ Ts ∪ {ω}, is defined as:

1. (ϕ 7→ α)(ϕ) = α,

2. (ϕ 7→ α)(ϕ′) = ϕ′, if ϕ 6= ϕ′,

3. (ϕ 7→ α)(C(τ1, . . . , τn)) = ω, if (ϕ 7→ α)(τi) = ω, for some i = 1, . . . , n,

4. (ϕ 7→ α)(C(τ1, . . . , τn)) = C((ϕ 7→ α)(τ1), . . . , (ϕ 7→ α)(τn)), if (ϕ 7→ α)(τi) 6= ω,
for all i = 1, . . . , n,

5. (ϕ 7→ α)(σ → τ) = ω, if (ϕ 7→ α)(τ) = ω,

6. (ϕ 7→ α)(σ → τ) = (ϕ 7→ α)(σ)→ (ϕ 7→ α)(τ), if (ϕ 7→ α)(τ) 6= ω,

7. (ϕ 7→ α)([σ]τ) = ω, if (ϕ 7→ α)(τ) = ω,

8. (ϕ 7→ α)([σ]τ) = [(ϕ 7→ α)(σ)](ϕ 7→ α)(τ), if (ϕ 7→ α)(τ) 6= ω,

9. (ϕ 7→ α)(τ1∩· · ·∩τn) = (ϕ 7→ α)(ρ1)∩· · ·∩(ϕ 7→ α)(ρm), where {ρ1, . . . , ρm} =
{τi ∈ {τ1, . . . , τn} | (ϕ 7→ α)(τi) 6= ω},

10. (ϕ 7→ α)(Γ) = {y : (ϕ 7→ α)(γ) | y : γ ∈ Γ},

11. (ϕ 7→ α)(〈Γ, γ〉) = 〈(ϕ 7→ α)(Γ), (ϕ 7→ α)(γ)〉.

59

Example 5.4. Take a substitution S = (ϕ1 7→ nat). So, we can instantiate the following
pair as follows:

S(〈{X : [ϕ1]ϕ2}, ϕ1〉) = 〈{X : [nat]ϕ2}, nat〉.

For S ′ = (ϕ2 7→ ω) ◦ S, we must be careful:

S ′(ϕ1 ∩ ϕ2) = nat,

S ′(ϕ1 → ϕ2) = ω.

The next lemma asserts the compatibility of substitutions with the relation ≤.

Lemma 5.5 (Compatibility of substitutions with ≤). Let S be a type substitution.

1. σ ≤ γ implies S(σ) ≤ S(γ).

2. Φ ≤ Γ implies S(Φ) ≤ S(Γ).

Proof. 1. The proof is by induction on the derivation of σ ≤ γ. The interesting cases
are when the rules (≤abs) or (≤→) are the last used ones. Since those cases are very
similar, only the case for (≤→) will be presented here.

We have σ = σ′ → ρ and γ = γ′ → τ . As premises of the rule, it holds that γ′ ≤ σ′

and ρ ≤ τ . By IH, S(γ′) ≤ S(σ′) and S(ρ) ≤ S(τ). If S(ρ) = ω, then S(τ) = ω by
Lemma 5.2 item (1). In this case, S(σ′ → ρ) = ω ≤ ω = S(γ′ → τ). Otherwise,
S(σ′ → ρ) = S(σ′)→ S(ρ) ≤ S(γ′)→ S(τ) = S(γ′ → τ) using rule (≤→).

2. It follows by item 1 and by definition of rule (≤Γ).

The next two definitions were based on [van Bakel, 2011], but here we also deal with
the abstraction types and the types with constructors.

Definition 39 The last type variable set of a type τ in Ts is denoted by LV (τ)
and defined by:

1. LV (ϕ) is {ϕ},

2. LV (C(τ1, . . . , τn)) is ⋃ni=1 LV (τi),

3. LV (σ → τ) and LV ([σ]τ) is LV (τ).

The notion of last type variable set is used to define the operation of type expansion in
the next definition. Notice that, in the case of arrow and abstraction types, we focus on

60

the type of the right-hand side, since they require attention in the sense that intersections
cannot be introduced there directly.

Definition 40 For all ψ ∈ Ts, k ≥ 2, environment Γ and type σ, the quadruple
〈ψ, k,Γ, σ〉 determines an expansion Exp〈ψ,k,Γ,σ〉 : TS → TS, which proceeds as
follows:

1. The set of type variables Vψ(Γ, σ) affected by Exp〈ψ,k,Γ,σ〉 is built by:

a) If ϕ occurs in ψ, then ϕ ∈ Vψ(Γ, σ),

b) If τ ∈ Ts is a subtype of Γ or σ and the intersection between LV (τ) and
Vψ(Γ, σ) is not empty, then all other type variables of τ are in Vψ(Γ, σ).

2. Suppose Vψ(Γ, σ) = {ϕ1, . . . , ϕm}. Take m × k different type variables
ϕ1

1, . . . , ϕ
k
1, . . . , ϕ

1
m, . . . , ϕ

k
m, disjoint of the variables in Γ and σ. For each

i = 1, . . . , k, consider a substitution Si such that Si(ϕj) = ϕij, for all
j = 1, . . . ,m.

3. Exp〈ψ,k,Γ,σ〉(γ) is computed traversing γ top-down and replacing every subtype
τ of γ by S1(τ) ∩ · · · ∩ Sk(τ) whenever LV (τ) intersects Vψ(Γ, σ), i.e., for
Ex = Exp〈ψ,k,Γ,σ〉,

Ex(τ1 ∩ · · · ∩ τn) = ⋂n
i=1Ex(τi)

Ex(τ) = ⋂k
i=1(Si(τ)), if LV (τ) intersects Vψ(Γ, σ)

Ex(γ′ → ρ) = Ex(γ′)→ Ex(ρ), if LV (ρ) does not intersect
Vψ(Γ, σ)

Ex([γ′]ρ) = [Ex(γ′)]Ex(ρ), if LV (ρ) does not intersect
Vψ(Γ, σ)

Ex(C(τ1, . . . , τn)) = C(Ex(τ1), . . . , Ex(τn)), if LV (C(τ1, . . . , τn)) does not
intersect Vψ(Γ, σ)

Ex(ϕ) = ϕ, if ϕ is not in Vψ(Γ, σ).

Example 5.6. When it is desirable to add polymorphism in the domain of an arrow
or abstraction type, the intersection can be used without problem because our grammar
allows intersection on the left-hand side of such types. However, if the polymorphism
is expected in the right-hand side, some special treatment is necessary. For example, to
expand ϕ1 in [ϕ1]ϕ2 one could obtain [ϕ3 ∩ ϕ4]ϕ2. On the other hand, to expand ϕ2 in
the same type, it is necessary to expand the entire type in the sense that we cannot add

61

an intersection in the right-hand side. So the result would be [ϕ3]ϕ5 ∩ [ϕ4]ϕ6.

The next lemma is a technical result to prove the compatibility of type expansion with
the ordering ≤.

Lemma 5.7. For τ, ρ ∈ Ts, τ ≤ ρ implies LV (τ) = LV (ρ).

Proof. By induction on the derivation of τ ≤ ρ. Lets analyse the cases of transitivity and
abstraction.

(≤Trans) In this case, there exists σ such that τ ≤ σ ≤ ρ. By Lemma 5.2(1), σ = ⋂k
i=1 σi

such that τ ≤ σi, for all i = 1, . . . , k, and σi ≤ ρ, for some i. Thus, by IH, it follows
that LV (τ) = LV (σi), for all i. In this way, LV (σi) = LV (ρ) for all i, by IH and
because all LV (σi) are equal. The result follows by transitivity.

(≤abs) τ = [σ]τ ′, ρ = [γ]ρ′ and the following assertions are valid: γ ≤ σ and τ ′ ≤ ρ′. By
IH, LV (τ ′) = LV (ρ′). So, by definition of last type variable set, LV (τ) = LV (ρ).

The Lemma 5.8 and its proof is also presented in [van Bakel and Fernández, 1997] and
it states the compatibility of expansion with the ordering ≤.

Lemma 5.8 (Compatibility of Expansion with ≤). Let E = Exp〈ψ,k,Γ,σ〉 be a type expan-
sion.

1. σ ≤ γ implies E(σ) ≤ E(γ).

2. Φ ≤ Γ implies E(Φ) ≤ E(Γ).

Proof. The proof is by induction on the derivation of σ ≤ γ. Only the case (≤abs) will
be presented here.

We have σ = [σ′]ρ and γ = [γ′]τ . As premises of the rule, it holds that γ′ ≤ σ′ and
ρ ≤ τ . By Lemma 5.7, we have only two cases:

• If LV ([σ′]ρ) and LV ([γ′]τ) intersect Vψ(Γ, σ), then E([σ′]ρ) = ⋂k
i=1 Si([σ′]ρ) and

E([γ′]τ) = ⋂k
i=1 Si([γ′]τ). By Lemma 5.5, Si([σ′]ρ) ≤ Si([γ′]τ) for all i = 1, . . . , k,

and the result follows.

• If LV ([σ′]ρ) does not intersect Vψ(Γ, σ) so neither does LV ([γ′]τ) and vice versa. By
IH, E(γ′) ≤ E(σ′) and E(ρ) ≤ E(τ), what implies that E([σ′]ρ) = [E(σ′)]E(ρ) ≤
[E(γ′)]E(τ) = E([γ′]τ), as it was supposed to be proven.

62

5.2 Type Inference System and Basic Properties

This section presents the system of type derivation rules that is explored in this thesis
and the fundamental properties about it, which include the preservation of types for
α-equivalent terms.

Definition 41 A type judgement is a tuple of a type environment, a term and
a type, denoted by Γ ` t : γ. A type judgement Γ ` t : γ is derivable if it can be
deduced following the rules in Table 5.2; if so, then 〈Γ, γ〉 is called a typing of t. In
Table 5.2, all types are strict except for the σ’s that can be intersection types while
C ranges over chains of type operations, that is a sequence 〈O1, . . . , Ok〉 of type
operations of lifting, substitution and expansion that apply to types as follows:

C(σ) = 〈O1, . . . , Ok〉(σ) = O1(. . . (Ok(σ)) . . .).

Here liftings, substitutions and expansions do not have a determined order in chains.
The empty chain is denoted by Id.

Table 5.2: Type System

(Ta)
σ ≤ τ

Γ on a : σ ` a : τ
(TX)

σ ≤ τ

Γ on X : σ ` π ·X : τ

(T[a])
Γ on a : σ ` t : τ
Γ ` [a]t : [σ]τ

(T∩)
Γ ` t : τ1 . . . Γ ` t : τk

Γ ` t : τ1 ∩ · · · ∩ τk
, k 6= 1
bola

(Tf)
σ1 → · · · → σn → τ = C(Σf) Γ ` t1 : σ1 . . . Γ ` tn : σn

Γ ` f(t1, . . . , tn) : τ

The rule (T∩) can be an axiom in the case that k = 0. This makes possible that any
term is typable with type ω.

The next lemma is an inversion lemma on typing 〈Γ, σ〉 with respect to the structure
of the corresponding term t.

Lemma 5.9 (Generation Lemma). 1. If Γ ` a : σ, then σ = ω or there exists a : γ ∈ Γ
such that γ ≤ σ.

2. If Γ ` π ·X : σ, then σ = ω or there exists X : γ ∈ Γ such that γ ≤ σ.

63

3. If Γ ` [a]t : σ, then σ = ⋂n
i=1[ρi]τi and Γ on a : ρi ` t : τi.

4. If Γ ` f(t1, . . . , tn) : σ, then σ = ⋂k
j=1 ρj and there are chains of operations Cj,

1 ≤ j ≤ k, such that Cj(Σf) = γj1 → · · · → γjn → ρj,

Γ ` t1 : γj1 , . . . , Γ ` tn : γjn , ∀j = 1, . . . , k.

Proof. 1. The proof is by induction on the derivation of types. The only rules that
can be the last ones to be used are (Ta) and (T∩). If it is (Ta) so the statement is
obtained because there is a : γ annotated in Γ with γ ≤ σ. If the rule is (T∩), then
σ = σ1 ∩ · · · ∩ σn and the deductions Γ ` a : σi are valid for all 1 ≤ i ≤ n. If n = 0
then σ = ω. If n 6= 0, the IH can be used and there is a type annotation a : γ ∈ Γ
such that γ ≤ σi, what implies that γ ≤ σ by rule (≤∩I). Notice that the same Γ is
used in all the n subderivations.

2. The proof is similar to the previous item, but the rules that can be for last ones to
be used are (TX) or (T∩).

3. The rules that can be used for last are (T[a]) or (T∩). If the rule is (T[a]), then
σ = [ρ]τ . If the rule is (T∩), then σ = δ1 ∩ · · · ∩ δn and the deductions Γ ` [a]t : δi
hold for every 1 ≤ i ≤ n. Since each δi is a strict type, the rule (T∩) cannot be
applied again. So, each δi = [ρi]τi, as analysed first.

4. The only possible rules to apply are (Tf) and (T∩). If (T∩) is applied, then σ =⋂k
j=1 ρj, with k derivations. Since each ρj is a strict type, only the (Tf) rule could

be applied before. So, the conditions for each ρj are supplied, as in the statement
of the lemma.

Following, the operations of lifting, substitution and expansion are proved to be sound
in the type system.

Lemma 5.10 (Soundness of Lifting). If Γ ` t : τ and 〈Γ, τ〉 ≤ 〈Γ′, τ ′〉, then Γ′ ` t : τ ′.

Proof. By induction on the derivation of Γ ` t : τ .

• Rule (Ta): Γ′a ≤ Γa ≤ τ ≤ τ ′. So, Γ′ ` a : τ ′.

• Rule (TX): Γ′X ≤ ΓX ≤ τ ≤ τ ′. Thus, Γ′ ` π ·X : τ ′.

• Rule (T[a]): We have Γ on a : σ ` t′ : ρ. If [σ]ρ ≤ τ ′, then τ ′ = ⋂m
i=1[σ′i]ρ′i by

Lemma 5.2(2) and, for each i, σ′i ≤ σ and ρ ≤ ρ′i. So, by IH, Γ′ on a : σ′i ` t′ : ρ′i.
Thus, using rules (T[a]) and (T∩), we obtain Γ′ ` [a]t′ : τ ′.

64

• Rule (T∩): τ = τ1 ∩ · · · ∩ τn ≤ τ ′, Γ ` t : τj for each j = 1, . . . , n and, by
Lemma 5.2(1), τ ′ = ⋂m

i=1 τ
′
i such that, for all i = 1, . . . ,m, there exists j = 1, . . . , n

satisfying τj ≤ τ ′i . By IH, Γ′ ` t : τ ′i and, applying (T∩), one obtains Γ′ ` t : τ ′.

• Rule (Tf): There exists a chain C of operations such that C(Σf) = σ1 → · · · →
σn → τ and Γ ` ti : σi, for all i = 1, . . . , n. This implies that Γ′ ` ti : σi by IH.
Since σ1 → · · · → σn → τ ≤ σ1 → · · · → σn → τ ′ (because τ ≤ τ ′), the lifting
L = L〈〈∅,σ1→···→σn→τ〉,〈∅,σ1→···→σn→τ ′〉〉 is well defined and L ◦ C(Σf) = σ1 → · · · →
σn → τ ′, what gives us Γ′ ` f(t1, . . . , tn) : τ ′.

Lemma 5.11 (Soundness of type substitution). Let S be a type substitution and Γ ` t : σ
a derivable judgement. So, S(Γ) ` t : S(σ) has a type derivation that is exactly as the
original with the substitution S applied in each node.

Proof. Since the case when S(σ) = ω is trivial, we consider S(σ) 6= ω. The proof proceeds
by induction on the derivation of Γ ` t : σ.

• Rule (Ta): t = a and Γa ≤ σ. Since S(Γa) ≤ S(σ) by Lemma 5.5, we obtain
S(Γ) ` a : S(σ).

• Rule (TX): Similar to the previous item.

• Rule(T[a]): t = [a]t′, σ = [γ]τ and Γ on a : γ ` t′ : τ . By IH, S(Γ) on a : S(γ) ` t′ :
S(τ). Since S([γ]τ) 6= ω, one has S[τ] 6= ω and S([γ]τ) = [S(γ)]S(τ). In this way,
S(Γ) ` [a]t′ : S([γ]τ).

• Rules (T∩) and (Tf): these cases are developed in [van Bakel and Fernández, 1997].

Lemma 5.12 (Soundness of type expansion). Let E be a type expansion and Γ ` t : σ a
derivable judgement. So, E(Γ) ` t : E(σ) is also derivable.

Proof. Suppose w.l.o.g. that σ ∈ Ts. In the proof of Theorem 4.4.3 of
[van Bakel and Fernández, 1997], most of the proof is done, including the case when
E(σ) /∈ Ts. We only need to add the case of rule (T[a]) when E(σ) ∈ Ts.

In such case, one has σ = [σ′]τ , t = [a]t′ and Γ on a : σ′ ` t′ : τ . By IH, we obtain
E(Γ) on a : E(σ′) ` t′ : E(τ). Applying rule (abs), it holds that E(Γ) ` [a]t′ : [E(σ′)]E(τ).
If the last type variable set of τ intersected Vψ(Γ, σ), E([σ′]τ) would be an intersection,
what contradicts E(σ) ∈ Ts. So, E([σ′]τ) = [E(σ′)]E(τ), what concludes the proof.

65

The proposition that follows states that atoms which are fresh in a term are not
important in a typing (they can be removed or updated in the environment) and atoms
and unkowns that do not occur in the environment are fresh (names) or do not occur in
the term.

Proposition 5.13. 1. If Γ ` t : σ and there exists some ∆ such that ∆ ` a#t, then
Γ on a : τ ` t : σ. (Type weakening).

2. If Γ on a : τ ` t : σ and there exists some ∆ such that ∆ ` a#t, then Γ ` t : σ.
(Type strengthening)

Proof. By induction on deductions.

1. • Rule (Ta): Γ on b : γ ` b : σ with γ ≤ σ, a /∈ atms(b) and ∆ ` a#b. So,
Γ on b : γ on a : τ ` b : σ using rule (Ta).

• Rule (TX): similarly to the previous case, Γ on X : γ on a : τ ` π ·X : σ with
γ ≤ σ.

• Rule (T[a]): t = [b]t′, σ = [σ′]σ′′ and Γ on b : σ′ ` t′ : σ′′. One has to consider
2 cases. If a = b, then Γ on a : τ on a : σ′ = Γ on b : σ′ and we have the
same valid judgement. If a 6= b, then ∆ ` a#t′ (or a /∈ atms(t′)) and, by IH,
Γ on b : σ′ on a : τ ` t′ : σ′′.

• Rule (T∩): it can be obtained applying IH in the cases that σ 6= ω. If σ = ω,
the derivation is trivial.

• Rule (Tf): it holds directly applying the induction hypothesis.

2. Similar to the weakening.

The following lemma will be specially used in the context of “typed rewrite steps” in
Section 5.3, where renamed versions of rules are allowed.

Lemma 5.14 (Meta Level Equivariance of Type Derivations). Γ ` t : τ is derivable if
and only if so is πΓ ` πt : τ , where the permutation acts the same way throughout the
derivation, applied to each node.

Proof. By induction on type deductions.

• Rule (Ta): If σ ≤ τ , then Γ on a : σ ` a : τ if and only if πΓ on π(a) : σ ` πa : τ .

• Rule (TX): the annotation of variables is not changed by permutations.

66

• Rule (T[a]): By IH, Γ on a : σ ` t′ : ρ if and only if πΓ on π(a) : σ ` πt′ : ρ and the
statement is completed by applying the rule (T[a]).

• Rule(T∩): By IH, Γ ` t : τi for all i = 1, . . . ,m if and only if πΓ ` πt : τi and this
case is finished by applying the rule (T∩).

• Rule (Tf): There is a chain C such that C(Σf) = σ1 → · · · → σn → τ and, for all
i = 1, . . . , n, Γ ` ti : σi. By IH, πΓ ` πti : σi. So, πΓ ` πf(t1, . . . , tn) : τ . The reverse
is analogous.

The next lemma explains why we do not mind about the types that are annotated for
the atoms which occur in permutations, since permutations do not change types, whenever
the same renaming is used in the type environment.

Lemma 5.15 (Object Level Equivariance of Typing Derivations). Γ ` t : τ is derivable
if and only if so is πΓ ` π • t : τ , where the permutation acts the same way throughout the
derivation, applied to each node.

Proof. By induction on type deductions.

• Rule (Ta): If σ ≤ τ , then Γ on a : σ ` a : τ if and only if πΓ on π(a) : σ ` π(a) : τ .

• Rule (TX): the annotation of variables is not changed by permutations.

• Rule (T[a]): By IH, Γ on a : σ ` t′ : ρ if and only if πΓ on π(a) : σ ` π • t′ : ρ and the
statement is completed by applying the rule (T[a]).

• Rule(T∩): By IH, Γ ` t : τi for all i = 1, . . . ,m if and only if πΓ ` π • t : τi and this
case is finished by applying the rule (T∩).

• Rule (Tf): There is a chain C such that C(Σf) = σ1 → · · · → σn → τ and, for all
i = 1, . . . , n, Γ ` ti : σi. By IH, πΓ ` π • ti : σi. So, πΓ ` π • f(t1, . . . , tn) : τ . The
reverse is analogous.

Example 5.16. Consider Γ = {X : nat, a : nat} and the derivable type judgement
Γ ` +(a,X) : nat, where Σ+ = nat → nat → nat. So, it is also possible to derive
(a b)Γ ` +(b, (a b) · X) : nat, that is the result of applying (a b) to the judgement in the
object level.

(Tf)
(Ta)

Γ ` a : nat
(TX)

Γ ` X : nat

Γ ` +(a,X) : nat
!

(a b)Γ ` b : nat
(Ta)

(a b)Γ ` (a b) ·X : nat
(TX)

(a b)Γ ` +(b, (a b) ·X) : nat
(Tf)

67

The Lemma 5.17 asserts that two α-equivalent terms have the same typings, what is
very reasonable since such terms represent the same class of objects.

Lemma 5.17 (α-equivalence preserves types). If Γ ` t : σ is derivable and ∆ ` t ≈α s
for some ∆, then Γ ` s : σ is also derivable.

Proof. Induction on the derivation of α-equivalence.

• Rule (≈αa): t = s = a: it is straightforward.

• Rule (≈αX):t = π ·X and s = π′ ·X: since Γ ` π ·X : σ, by the Generation Lemma
(5.9), there exists γ such that X : σ ∈ Γ and γ ≤ σ.Thus, Γ ` π′ ·X : σ by applying
rule (TX).

• Rule (≈α[a]) or (≈α[b]):t = [a]t′ and s = [b]s′: we know that σ = ∩ni=1[σi]γi and
that Γ on a : σi ` t′ : γi for all i = 1, . . . , n, by the Generation Lemma (5.9). If a = b,
then ∆ ` t′ ≈α s′ and, by IH, Γ on b : σi ` s′ : γi and it follows that Γ ` [b]s′ : τ . If
a 6= b, then ∆ ` t′ ≈α (a b) • s′, a#s′, (a b) • t′ ≈α s′, b#t′. Lets consider the more
complex case when a, b ∈ Γ. Thus,

Γ \ {b : Γb} on a : σi ` t′ : γi, by Lemma 5.13(2) - strengthening,
Γ \ {a : Γa, b : Γb} on a : σi ` t′ : γi, that is the same judgement,
Γ \ {a : Γa, b : Γb} on a : σi on b : σi ` t′ : γi, by Lemma 5.13(1) - weakening,
Γ \ {a : Γa, b : Γb} on a : σi on b : σi ` (a b) • t′ : γi, by Lemma 5.15
Γ \ {a : Γa, b : Γb} on a : σi on b : σi ` s′ : γi, by induction hypothesis,
Γ \ {a : Γa, b : Γb} on a : σi ` [b]s′ : [σi]γi, applying rule (T[a]),
Γ \ {a : Γa, b : Γb} ` [b]s′ : [σi]γi, by Lemma 5.13(2) - strengthening,
Γ\ ` [b]s′ : [σi]γi, by Lemma 5.13(1) - weakening,
Γ\ ` [b]s′ : σ, applying rule (T∩).

• Rule (≈αf): t = f(t1, . . . , tn): this case follows by item 4 of Generation Lemma (5.9)
and IH, applying rules (Tf) and (T∩) at the end.

Example 5.18. Consider a signature where Σ∀ = ([ϕ]bool)→ bool, Σeven = nat→ bool
and Σ+ = ϕ→ ϕ→ ϕ (+ will be written infixed). By the following derivation, the term

68

∀[a]even(a+X) has 〈{X : nat}, bool〉 as a typing.

(Tf)

(T[a])

(Tf)

(Tf)
X : nat, a : nat ` a : nat (Ta) X : nat, a : nat ` X : nat (TX)

X : nat, a : nat ` a+X : nat

X : nat, a : nat ` even(a+X) : bool

X : nat ` [a]even(a+X) : [nat]bool

X : nat ` ∀[a]even(a+X) : bool

The same typing is also valid to ∀[b]even(b + (a b) ·X), by Lemma 5.17, because b#X `
∀[a]even(a+X) ≈α ∀[b]even(b+ (a b) ·X).

The Subterm Lemma presented next shows that a derivation of a judgement whose
type is different from ω contains typings for the subterms of the term in question.

Lemma 5.19 (Subterm lemma). If Γ ` t : σ is derivable with a derivation D without
any subterm typed with ω and s is a proper subterm of t, then there is a subtree of D that
derives Γ′ ` s : γ for some Γ′ and γ such that Γ′ is an extension of Γ.

Proof. By induction on the type derivation of Γ ` t : σ.

• Rules (Ta) and (TX) are trivial because there is no proper subterm of an atom or a
suspended variable.

• Rule (T[a]): We have Γ on a : ρ ` t′ : δ, t = [a]t′ and σ = [ρ]δ. If s = t′, it is done.
If not, then s is a proper subterm of t′ and, by IH, there are Γ′ and γ such that
Γ′ ` s : γ is a subtree in the derivation of Γ on a : ρ ` t′ : δ.

• Rule (T∩): σ = τ1 ∩ · · · ∩ τk and, for each i = 1, . . . , k, Γ ` t : τi. By IH, there are
Γi’s and γi’s such that Γi ` s : γi is a subtree of the derivation of Γ ` t : τi. In
this branch, it is important to observe that k 6= 0; otherwise, the IH would not be
possible.

• Rule (Tf): t = f(t1, . . . , tn), there is a chain C such that C(Σf) = σ1 → · · · → σn → σ

and Γ ` ti : σi for all i = 1, . . . , n. If s = ti for some ti, then the result follows.
Otherwise, s is a proper subterm of some ti and the result is obtained by IH.

5.3 Typed Matching and Typed Rewrite Relation

This section introduces the notion of typed matching, that is crucial for a rewrite relation
which considers types. This matching is supposed to instantiate type variables as well

69

as unknowns. In that way, the pattern of a matching must include a term in context,
as done in [Fernández and Gabbay, 2007], and a typing of such term. The term and
type substitutions should then satisfy the conditions that are expressed in each leaf with
unknowns of the type derivation. The notion of variable environment introduced next
isolates what information is relevant to consider, eliminating the type annotations of
atoms that are fresh for some unknown.

Definition 42 If Γ ` π ·X : σ is a leaf in the type derivation D of Γ′ ` t : γ, then
π−1Γ \ {a : ρ | ∆ ` a#X or ρ = ω} is a variable environment of X in ∆ ` D.

Notice that the atoms that cannot occur free in the instance of a variable are not
considered in a variable environment as well as atoms which are annotated with ω, because
they do not add information.

Example 5.20. Let [nat]ϕ → [string]ϕ → real be the type declaration of a binary
symbol g. Consider the judgement X : nat ` g([a]X, [a](a b) ·X) : real with the following
derivation:

D =
X : nat, a : nat ` X : nat(TX)

X : nat ` [a]X : [nat]nat
(T[a])

X : nat, a : string ` (a b) ·X : nat(TX)

X : nat ` [a](a b) ·X : [string]nat
(T[a])

X : nat ` g([a]X, [a](a b) ·X) : real
(Tf)

If we observe the leaf on the left-hand side of D, then the substitution [X 7→ a] respects
the environment {X : nat, a : nat} maintaining the type in the instance of X. On the
right-hand side, a is annotated with type string in the environment; applying the inverse
of (a b), which is itself, to the environment, we obtain {X : nat, b : string}, that is a
variable environment of X in ∅ ` D. Notice that enlarging this environment with a : nat
allows us to proceed with the instance of the term keeping the designated type.

In the case that the context is not empty, for instance {a#X}, then the variable
environments of X in {a#X} ` D would be {X : nat} and {X : nat, b : string}.

Definition 43 Let Φ ` l : τ be a type judgement with derivation D. The typed
matching problem (Φ
 ∇ ` l : τ)? ≈α (Γ
 ∆ ` s), with unkn(Φ,∇, l) and
V ars(Φ, τ) disjoint from unkn(Γ,∆, s) and V ars(Γ), has solution (C, θ, π) with a
chain of operations C, a substitution θ and a permutation π whenever:

1. ∆ ` π∇θ, πlθ ≈α s;

70

2. C(πΦ)|A ⊆ Γ, i.e., the atoms of Φ renamed with π have the annotations changed
only by C in Γ; and

3. π′−1Γ on C(Φ′) ` Xθ : C(Φ)X , for every variable environment Φ′ of X in
π∆ ` πD, with π′ the corresponding permutation in each leaf. Notice that
ΦX = Φ′X because renamings do not change annotations of unknowns.

Example 5.21. Take the symbol g as in Example 5.20. The following typed matching
problem

(X : nat
 b#X ` g([a]X, [a](a b) ·X) : real)?≈α (b : nat
 ∅ ` g([b]b, [c]b))

has a solution (Id, id, [X 7→ a]), i.e., ∅ ` b#a, g([a]a, [a]b) ≈α g([b]b, [c]b) and, taking the
variables environments in b#X ` D (Example 5.20), b : nat, X : nat, a : nat ` a : nat is
derivable as well as a : nat, X : nat, b : string ` a : nat.

Example 5.22. Consider ∏ with the type declaration of Example 5.1 and take the binary
symbol / (with Σ/ = nat→ nat→ rat and infixed notation), the unary symbol s (with
Σs = nat → nat) and the nullary symbol 0 (with Σ0 = nat). The following typed
matching problem

(
X : real ∩ rat ∩ nat, Y : nat, Z : nat
 i#X `

Z∏
i=Y

X : real ∩ rat ∩ nat
)

?≈α

(
m : nat
 ∅ `

m∏
i=1

(
s(0)

s(s(0))

))

has a solution
(
L〈〈∅,real∩rat∩nat〉,〈∅,rat〉〉, id,

[
X 7→ s(0)

s(s(0))

]
◦ [Y 7→ s(0)] ◦ [Z 7→ m]

)
. Observe

that the instance of the term satisfies the freshness constraint of the pattern in the empty
context.

The next lemma is inspired by the presentation given in [Fairweather, 2014].

Lemma 5.23 (Typed Nominal Pattern Matching Lemma). If Φ ` l : σ and (Φ
 ∇ ` l :
σ)?≈α (Γ
 ∆ ` s) = (C, θ, π), then Γ ` πlθ : C(σ).

Proof. Firstly, by meta-level equivariance (Lemma 5.14), soundness of type operations
in C (Lemmas 5.10, 5.11 and 5.12) and weakening (Lemma 5.13(1)), Γ ` πl : C(σ) is
derivable. To include the term-substitution θ, we proceed by induction on the derivation
of this last judgement. Assume that C(σ) 6= ω, since the opposite would be achieved
using rule (T∩).

71

• Rule (Ta): this part is trivial because θ has no effect on πl.

• Rule (TX): πl = π′ ·X. By Condition 3 of Definition 43,

π′−1Γ on C(π′−1◦πΦ \ {a : ρ | π∇ ` a#X}) ` Xθ : C(πΦ)X ,

what implies that

Γ on C(πΦ \ {a : ρ | π∇ ` a#X}) ` π′ ·Xθ : C(πΦ)X

using object-level equivariance (Lemma 5.15). Since C(πΦ)|A ⊆ Γ and C(πΦ)X ≤
C(σ) (by Lemmas 5.5 and 5.8 and the definition of lifting), the derivation of Γ `
π′ ·Xθ : C(σ) follows easily by Lemma 5.10.

• Rule (T[a]): l = [a]l′ and C(σ) = [σ′]τ . We have Γ on π(a) : σ′ ` πl′ : τ and, since
(C, θ, π) is also a solution for the matching problem (Φ on a : σ′
 ∇ ` l′ : τ)?≈α
(Γ on a : σ′
 ∆ ` (a b) • s′) for s = [b]s′, so one has Γ on π(a) : σ′ ` πl′θ : τ by IH.
Applying rule (T[a]), the result holds.

• Rule (T∩): C(σ) = τ1 ∩ · · · ∩ τk. It holds that Γ ` πt : τi. Since C(σ) 6= ω and
so k 6= 0, by IH, Γ ` πtθ : τi holds for each i = 1, . . . , k. Applying rule (T∩),
Γ ` πtθ : C(σ) is obtained.

• Rule (Tf): l = f(l1, . . . , ln), there is C ′ such that C ′(Σf) = σ1 → · · · → σn → C(σ)
and Γ ` πli : σi, for i = 1, . . . , n. Since the environment is not changed in this step,
by IH, we have Γ ` πliθ : σi. The result is obtained applying rule (Tf).

The last lemma is specially important because it ensures that the term which matches
the pattern has the same typing modified only by the type operations specified in the
solution and some additional type annotations (of fresh atoms and/or new unknowns).
Notice that, by Definition 43, such type check is not necessary when verifying if a triplet
is a solution of the typed matching problem.

The next lemma states that, for an instance of a term with different unknowns, the
term preserves the typing of the instance by adding only the unknowns’ type annotations.

Lemma 5.24 (Inversion Substitution Lemma). Let Γ ` tθ : γ be a derivable judgement
such that unkn(t) ∩ unkn(tθ) = ∅. Then, there is an environment Γ∗ which is Γ updated
with annotations of variables in unkn(t) and such that Γ∗ ` t : γ is derivable.

72

Proof. The proof is by induction on the derivation of Γ ` tθ : γ, but first we consider the
case when t = π ·X. In this case, Γ on X : γ ` π ·X : γ is derivable. Now, assume that t
is not a suspended variable.

• Rule (Ta): tθ = a and, since t is not a variable, t = a.

• Rule (TX): the only way this happens is when t is a suspended variable because the
variables are different from the ones of tθ.

• Rule (T[a]): t = [a]t′, tθ = [a]t′θ, γ = [σ]τ and Γ on a : σ ` t′θ : τ . By IH, there is Γ∗

such that Γ∗ on a : σ ` t′ : τ and, applying rule (T[a]), one obtains Γ∗ ` [a]t′ : [σ]τ .

• Rule (T∩): for i = 1, . . . , k, Γ ` tθ : τi and γ = τ1 ∩ · · · ∩ τk. By IH, Γ∗ ` t : τi and,
applying rule (T∩), Γ∗ ` t : γ.

• Rule (Tf): t = f(t1, . . . , tn), Γ ` tiθ : σi for i = 1, . . . , n and there exists C such that
C(Σf) = σ1 → · · · → σn → γ. By IH, there is Γ∗ such that Γ∗ ` ti : σi. Using rule
(f), one has Γ∗ ` f(t1, . . . , tn) : γ.

Definition 44 A pair 〈Π, ρ〉 of an environment and a type is called a principal
pair for a term t if it is a typing and, for every other typing 〈Γ, σ〉, there exist a
chain of operations C such that C(〈Π, ρ〉) = 〈Γ, σ〉.

An important feature of this system is that a term may not have a principal pair, as
the next example demonstrate.

Example 5.25. If the declaration of ∏ is Σ∏ = [nat]real → nat → nat → real ∩
[nat]rat → nat → nat → rat ∩ [nat]nat → nat → nat → nat, then the principal pair
of ∏Z

i=Y X (sugar of ∏([i]X, Y, Z)) does not exist. Notice that 〈{X : real, Y : nat, Z :
nat}, real〉 is a typing of this term and that substitutions and expansions do not change
the type declaration, because it has no type variable. Then the least type with respect to
≤ that can be derived to ∏Z

i=Y X is real∩rat∩nat. However, there is no type annotation
of X that could derive such type and be larger than real with respect to ≤.

On the other hand, if Σ∏ = [nat]ϕ → nat → nat → ϕ, as in Example 5.1, the
principal pair of the term is the typing 〈{X : ϕ, Y : nat, Z : nat}, ϕ〉.

Definition 45 A typed rewrite rule Φ
 ∇ ` l → r : ρ is a rule such that
〈Φ, ρ〉 is a principal pair for l and it is a typing for r, in such a way that the variable

73

environments of each unknown are equal in the derivations of Φ ` l : ρ and of
Φ ` r : ρ.

The condition of having equal variable enviroments throughout derivations
is called diamond property in [Fairweather, 2014] and linearity property in
[Fairweather and Fernández, 2016]. There, only derivations with this property are valid.
Here, it is required only for rewrite rules in order to obtain the Subject Reduction Lemma,
as proved in Subsection 5.3.1.

Example 5.26. The rules in the system of Table 5.3 are typed rewrite rules. Take, for
instance, the fifth rule. The type derivation for the left-hand side is expressed following.

X : ϕ, a : ω, b : ω ` X : ϕ (TX)
X : ϕ, a : ω ` [b]X : [ω]ϕ

(T[a])

X : ϕ, a : ω ` Lam[b]X : ω → ϕ
(Tf)

X : ϕ ` [a]Lam[b]X : [ω](ω → ϕ)
(T[a])

X : ϕ ` Z : ω (T∩)
X : ϕ ` Sub([a]Lam[b]X,Z) : ω → ϕ

(Tf)

Notice that this typing is a principal pair of Sub([a]Lam[b]X,Z) and so is 〈{X :
ϕ}, ϕ′ → ϕ〉 because each of them can be obtained by the other and they gener-
ate any other typing for this term. Applying the lifting L〈〈{X:ϕ},ω→ϕ〉,〈{X:ϕ},ϕ′→ϕ〉〉 to
〈{X : ϕ}, ω → ϕ〉 gives us 〈{X : ϕ}, ϕ′ → ϕ〉 and this second one is obtained apply-
ing the substitution (ϕ′ 7→ ω) to the former one. The variable environment of X and Z
in this derivation with {b#Z} is {X : ϕ}. For the term in the right-hand side, we have
the same variable environment, as we can see in the type derivation below.

X : ϕ, b : ω, a : ω ` X : ϕ (TX)
X : ϕ, b : ω ` [a]X : [ω]ϕ

(T[a])
X : ϕ, b : ω ` Z : ω (T∩)

X : ϕ, b : ω ` Sub([a]X,Z) : ϕ
(Tf)

X : ϕ ` [b]Sub([a]X,Z) : [ω]ϕ
(T[a])

X : ϕ ` Lam[b]Sub([a]X,Z) : ω → ϕ
(Tf)

Definition 46 Let R = Φ
 ∇ ` l → r : ρ be a typed rewrite rule. A nominal
typed rewrite step Γ
 ∆ ` s→R

τ t holds whenever (Φ
 ∇ ` l : ρ)?≈α (Γ
 ∆ `
s|p) = (C, θ, π), for some p ∈ Pos(s), and ∆ ` t ≈α s[p← πrθ].

74

Table 5.3: Λx

Symbols Type Declarations Arity

App : (ϕ1 → ϕ2)→ ϕ1 → ϕ2 2
Lam : ([ϕ1]ϕ2)→ ϕ1 → ϕ2 1
Sub : ([ϕ1]ϕ2)→ ϕ1 → ϕ2 2

Rules :
X : ϕ
 ∅ ` App(Lam [a]X,Y) −→ Sub([a]X,Y) : ϕ
X : ϕ
a#X` Sub([a]X,Y) −→ X : ϕ
Y : ϕ
 ∅ ` Sub([a]a, Y) −→ Y : ϕ

X : ϕ1 → ϕ2, Y : ϕ1
 ∅ ` Sub([a]App(X,Y), Z) −→ App(Sub([a]X,Z),Sub([a]Y, Z)) : ϕ2
X : ϕ
b#Z ` Sub([a]Lam [b]X,Z) −→ Lam [b]Sub([a]X,Z) : ω → ϕ

Example 5.27. Take the first rule of the system in Table 5.3, which is typed and rep-
resents the β-reduction in the context of explicit substitutions. The typed matching
problem

(X : ϕ
 ∅ ` App(Lam[a]X, Y))?≈α (∅
 ∅ ` App(Lam[b]App(b, b), Lam[b]b))

has a solution S = ((ϕ 7→ (ϕ′ → ϕ′)), (a b), [X 7→ App(b, b)] ◦ [Y 7→ Lam[b]b]). Look at the
type derivation of the left-hand side of the rule.

(Tf)

(Tf)

(T[a])
X : ϕ, a : ω ` X : ϕ (TX)
X : ϕ ` [a]X : [ω]ϕ

X : ϕ ` Lam[a]X : ω → ϕ X : ϕ ` Y : ω (T∩)
X : ϕ ` App(Lam[a]X, Y) : ϕ

To verify the solution S, it is necessary to check that the permutation and the term
substitution satisfy the matching for the terms and freshness contexts, and to see if
typability in the instantiated variable environments continues working. The variable
environment of Y is trivial because the type is ω. For X, one has that ∅ ` Lam[a]a :
ϕ′ → ϕ′.

By Lemma 5.23, ∅ ` App(Lam[b]App(b, b), Lam[b]b) : ϕ′ → ϕ′ is derivable. Indeed,
we have the derivations below of the “self-application”, of the “identity” and of the term

75

considered above. Consider σ = ϕ′ → ϕ′.

D′ =
(Tf)

(T[a])

(Tf)
b : (σ → σ) ∩ σ ` b : σ → σ (Ta) b : (σ → σ) ∩ σ ` b : σ (Ta)

b : (σ → σ) ∩ σ ` App(b, b) : σ
∅ ` [b]App(b, b) : [(σ → σ) ∩ σ]σ

∅ ` Lam[b]App(b, b) : ((σ → σ) ∩ σ)→ σ

D′′ =
(T∩)

(Tf)

(T[a])
b : σ ` b : σ (Ta)
∅ ` [b]b : [σ]σ

∅ ` Lam[b]b : σ → σ

b : ϕ ` b : ϕ (Ta)
∅ ` [b]b : [ϕ]ϕ

(T[a])

∅ ` Lam[b]b : σ
(Tf)

∅ ` Lam[b]b : (σ → σ) ∩ σ

(Tf)

D′

∅ ` Lam[b]App(b, b) : ((σ → σ) ∩ σ)→ σ

D′′

∅ ` Lam[b]b : (σ → σ) ∩ σ
∅ ` App(Lam[b]App(b, b), Lam[b]b) : ϕ′ → ϕ′

5.3.1 Subject Reduction

Now the main theorem of Subject Reduction is presented, i.e., the result that proves
that typed rewrite steps using typed rewrite rules preserve types under the condition
of uniformity of such rules. Notice that uniformity (Definition 30) is crucial to have
preservation of typings as we can see in the following example. This condition was inspired
by [Fairweather and Fernández, 2016].

Example 5.28. The rule R = (X : ϕ
 ∅ ` X −→ (a b) · X : ϕ) is typed but it does
not preserves typings. Observe that the only variable environment for the left-hand and
right-hand side is {X : ϕ} and that the matching problem

(X : ϕ
 ∅ ` X : ϕ)?≈α (a : ϕ
 ∅ ` a : ϕ)

has a solution (Id, id, [X 7→ a]), but {a : ϕ} it is not enough to type b, the resulting term
of the typed rewrite step. This occurs because non-uniform rules can introduce atoms
that are fresh in the left-hand side into the right-hand side.

Theorem 5.29 (Subject Reduction). Given a uniform typable rewrite rule R = Φ,∇ `
l→ r : σ, if Γ ` s : γ and Γ
 ∆ ` s→R

τ t, then Γ ` t : γ.

Proof. By the Subterm Lemma, there is a judgement Γ′ ` s|p : γ′ whose derivation is part
of the derivation of Γ ` s : γ and p is the position where the redex occurs. Indeed, this

76

lemma is considered when s|p is not inside some s′ with type ω in such derivation. In this
case, we can always assign the type ω for the corresponding subterm t′ of t.

Since 〈Φ, σ〉 is a typing of l, by Lemma 5.23, Γ′ ` πlθ : C(σ), for a solution (C, θ, π)
for the matching problem (Φ
 ∇ ` l : σ)?≈α (Γ′
 ∆ ` s|p). Insofar as ∆ ` πlθ ≈α s|p,
it holds also that Γ′ ` πlθ : γ′. By Lemma 5.24, there exists Γ∗ that differs from Γ′ only
in the unknowns which are in l and such that Γ∗ ` πl : γ′.

By the principality of 〈Φ, σ〉 for l, 〈πΦ, σ〉 is principal for πl, by Lemma 5.14 (meta-
level equivariance). So, there exists C ′ such that 〈Γ∗, γ′〉 = C ′(〈πΦ, σ〉) and (C ′, θ, π) is
also a solution for the typed matching problem (Φ
 ∇ ` l : σ)?≈α (Γ∗
 ∆ ` s|p). To
conclude the proof, we need to show that Γ′ ` πrθ : γ′, what can be achieved by using the
Matching Lemma (Lemma 5.23) if we are able to prove that (C ′, π, θ) is a solution of the
typed matching problem

(Φ
 ∇ ` r : σ)?≈α (Γ∗
 ∆ ` πrθ)

because the additional unknowns that are annotated in Γ∗ do not occur in πrθ.
In fact, one must demostrate that, for all X ∈ unkn(r), π′−1Γ∗ on C ′(Φ′) ` Xθ : C ′(Φ)X

is derivable, as described in Definition 43, for π′ in πr. The necessary type annotations
in π′−1Γ∗ on C ′(Φ′) to type the term Xθ are of the unknowns and free atoms introduced
by θ, unless they are typed with ω. The different permutations do not change the type
annotations of unknowns. So we will concentrate on the free atoms of Xθ.

Take a a free atom in Xθ. Consider π1, . . . , πk the permutations that accompany X
in πl. Since π−1

i Γ∗ on C ′(Φ′) ` Xθ : C ′(Φ)X is derivable for all i = 1, . . . , k, we know that
a : ρ ∈ C ′(Φ′) or a : ρ ∈ π−1

i Γ∗ for some ρ 6= ω. In the first case, it is all right because a : ρ
would be also in π′−1Γ∗ on C ′(Φ′). In the second case, πi(a) : ρ ∈ Γ∗ for all i = 1, . . . , k. If
π′(a) = πi(a) for some i, then it is done, because a : ρ would be in π′−1Γ∗. Otherwise, by
the uniformity of the rule, π′(a) would be abstracted over π′ ·X. However, in this case,
a : ρ should be initially in C ′(Φ′), as already considered.

77

Chapter 6

Conclusions and Future Work

In this thesis, we presented results on three main aspects with respect to the nominal
setting. First, a formalisation of important properties involving a nominal unification
algorithm was developed, what provided an initial background about nominal setting in
the proof assistant PVS. Secondly, we explored some criteria that guarantee confluence
and local confluence in the context of nominal rewriting. Last, we extended the study on
types for nominal terms developing an intersection type system with the subject reduction
property.

Regarding the theory nominal unification developed in PVS, a nominal unification
algorithm that only takes terms as parameters was presented. Unlike other approaches,
which use transformation rules and take the corresponding freshness problems as part
of the unification problem, here we have specified a function that can compute freshness
problems separately. Our nominal unification algorithm is more straightforward and closer
to the ones that implement first-order unification.

Additionally, we formalised transitivity for ≈α in a direct manner without using a weak
intermediate relation as in [Urban, 2010]. Here, the proof was based on elementary lemmas
about permutations, freshness and α-equivalence; such lemmas are well-known in the con-
text of nominal unification. In [Urban, 2010], the same auxiliary lemmas to demonstrate
transitivity were proved, including some extra lemmas to deal with this weak-equivalence.
We believe that the current formalisation of transitivity of ≈α is simpler in the sense that
it only uses the essential notions and results. Symmetry of ≈α is also formalised indepen-
dently from transitivity, diverging from [Urban et al., 2004, Urban, 2010].

The style of proofs formalised here could have been formalised in any higher-order
proof assistant; PVS was chosen with the goal of enriching the libraries for term rewriting
systems. Important features of PVS such as dependent types can be replaced by other
mechanisms in Isabelle/HOL, for instance. For example, the substitution generated in the
computation of unify(t, s) must be of type Subs_unif(t,s) (this is the PVS specification

78

for the type Subs((t, s)) in Definition 17) in order to prove termination. In Isabelle/HOL,
this is treated by defining substitutions in a slightly different way. PVS also allows to
use type variables when defining a theory; those variables can be parameterised when
such theory is imported by another one. In Isabelle/HOL, parameterising theories is not
straightforward (from our point of view), but functions can be defined polymorphically,
which provides different feasible solutions for the same kind of formalisation. A formalisa-
tion in Isabelle/HOL would bring out the possibility of a direct comparison regarding the
previous formalisations of unification in [Urban, 2004], but it should be emphasised that
the advantages of the current formalisation arise from the differences in the theoretical
proofs (Section 3.2).

With respect to the study of (local) confluence for nominal rewriting, we
have presented easy-to-check criteria in rewrite theories, improving previous crite-
ria [Fernández and Gabbay, 2007, Suzuki et al., 2015]. The theorem of confluence
of orthogonal uniform NRSs and the Critical Pair Criterion were first shown in
[Fernández and Gabbay, 2007], but the notion of orthogonality prohibited ambiguity be-
tween permuted variants of the same rule and the second result required joinability of the
CP generated by such overlaps. [Suzuki et al., 2015] relaxed the conditions over the first
theorem by allowing permuted versions of rules, but a new condition called “α-stability”
must be provided in turn. The authors also presented a criterion for α-stability called
ASP.

Inspired by [Suzuki et al., 2015], we relaxed the CP Criterion by avoiding the check of
joinability for CPs of permuted versions of a rule, also adding the condition of α-stability.
In parallel, this result was explored in [Suzuki et al., 2016] too. However, our results
include an additional criterion of α-stability, namely closedness of rules, which is simple
to check with a nominal matching problem, the non-equivariant problem, that can be
solved in linear time [Calvès and Fernández, 2010].

Our contributions embrace the extension of such theorems on confluence of NRSs to
closed rewriting, an efficient notion of rewriting, even for non-closed rules. This extension
was specially important not only for the sake of efficiency, but also theoretically: our
results do not require α-stability or uniformity, unlike the versions presented for the stan-
dard nominal rewriting. Those results can also be found in [Ayala-Rincón et al., 2016a],
written in collaboration with M. Ayala-Rincón, M. Fernández and M. Gabbay.

Concerning intersection types, we have chosen to present an adapted Essential System,
presented first in [van Bakel, 1993] in the context of λ-calculus. Here, the syntax of types
is extended with user defined type constructors and an abstraction type constructor.
These extra types required modifications on the construction of the type ordering as
well as of the type operations of lifting, substitution and expansion. An specialised type

79

inference system for nominal terms was also built. The notion of typability differs from
[Fairweather, 2014] because there is no restriction over the permutations of a suspension
and no condition over type derivations such as “diamond property” or “linearity”.

Expected results over this type system could be achieved in this thesis. For instance, we
have compatibility of type substitution and expansion with the type ordering, the equiv-
ariance of typings under meta and object-level action of permutations, and preservation of
typings for α-equivalent terms. With respect to rewriting, the notion of matching needed
to be replaced by a typed matching as well as the notion of rewriting. The constraints
that must be imposed are due to the possibly capturing nature of our substitutions. With
the adaptations on the definitions and the condition of uniformity on the rewrite rules,
we were able to prove preservation of typing under typed rewrite steps, i.e., the subject
reduction property.

Future work: Although nominal approaches have several advantages in the treatment
of bound variables, there is still work to be done regarding the study of relevant compu-
tational properties. At a first glance, a subsequent study to be done is applying nominal
unification for the construction of a nominal completion algorithm à la Knuth-Bendix
as part of a PVS development for nominal rewriting. A completion algorithm for closed
nominal rewriting systems is provided in [Fernández and Rubio, 2012].

Besides, the results on confluence of this thesis may extend the PVS theory of nominal
unification, since they have not been formalised yet in the context of nominal setting.
To do so, it would be necessary to provide the proper definitions of nominal rewriting
using equivariant matching and closed nominal rewriting, with nominal equivariance-free
matching. In the context of TRSs, confluence of orthogonal systems and the Critical
Pair Criterion are formalised in PVS, as shown in [Galdino and Ayala-Rincón, 2010] and
[Rocha-Oliveira et al., 2016].

Another possible application of this formalisation of the nominal unification algorithm
is in the verification of nominal resolution approaches as done, for instance, in the propo-
sitional case in [Constable and Moczydlowski, 2009].

In our intersection type system, it is desirable to reach some normalisation results
with respect to nominal rewriting. Unlike the λ-calculus or explicit substitutions calculi,
our rules are not known, what can make such results on normalisation very challenging.
A similar work was done for TRSs in [van Bakel and Fernández, 1997]. The notion of
typed rewriting can also be extended to the closed rewriting relation, as done for the
polymorphic system in [Fairweather, 2014]. There, it is shown that, although the typed
rewriting is more expressive, the typed closed rewriting is more efficient and most of the
systems of interest can be modelled by this last approach.

80

Additionally, criteria to guarantee the principal pair property have to be investigated.
We do believe that such feature can be achieved for some restricted version of our type
system, since the one presented in [van Bakel et al., 1996], which combines TRSs with the
λ-calculus, has the principal pair property for an intersection type system. That system
is close to ours in the sense that it possesses function symbols with type declarations and
λ-abstractions.

81

Index

α-equivalence, 25, 46, 64
judgement, 13
transitivity, 25, 27

α-stability, 45–47

abstraction, 12, 28, 33
arity, 11, 12, 53, 71
atom, 11

set, 14

closed, 41
rewriting, 42, 47, 48
rule, 41, 46, 47
term in context, 41, 42

confluence, 15, 16, 40, 43, 47, 51
local, 40, 49

critical pair, 43–45

depth, 31, 32
derivable, 13
derivable judgement, 59
difference set, 13

equivariance, 39, 40, 43, 52, 63, 64

formula
antecedent, 16
consequent, 16

fresh critical pair, 49
fresh overlap, 49

proper, 49
root permutative, 49

fresh quasi-orthogonality, 49, 51
freshened variant, 41, 42, 49, 50

freshness, 24, 30, 32
constraint, 13
context, 13, 24, 29, 39, 41
judgement, 13

function
application, 12
symbol, 11, 71

identity, 13
induction scheme, 19
intersection type, 54

joinable, 16, 43, 49

last type variable, 57, 58
left-linear, 45

matching, 40–42, 47
meta-variables, 12
mgu, 35, 43, 49

name, 11
nominal

rewriting, 39
nominal rewriting, 36
nominal term, 12, 21, 54

orthogonality, 45
overlap, 43

permutative, 44
proper, 44
root permutative, 44, 45
trivial, 43

pair, 12, 32

82

permutation, 11, 22, 39
action, 11, 12, 23
meta-action, 39, 54

permuted variant, 40, 43, 44
position, 14, 39
principal pair, 69, 70
proof assistant, 15, 17
proof rule, 16, 17
PVS, 12, 15

command, 16, 17
datatypes, 19
measure, 20, 22, 32
ordering, 20
TCC, 15
theory, 15, 21, 22

quasi-orthogonality, 45

replacement, 14
rewrite

judgement, 38
peak, 40, 45, 50
reflexive transitive closure, 39, 42
rule, 38, 39
step, 39
theory, 38, 39, 45

sequent, 16
sequent calculus, 15
signature, 11
strict type, 53
substitution, 12, 13, 23, 33, 34, 39, 41, 46,

68, 69
action, 13
nuclear, 13, 23

subterm, 14
suspension, 12, 22
swapping, 11, 22

term in context, 41, 43

term-former, 11
termination, 22, 33, 40
TRS, 15
tuple, 12

empty, 12
type, 53

abstraction, 54, 59
arrow, 54, 59
constructor, 53
declaration, 54, 71
environment, 54
expansion, 55, 58–61
inference system, 60
judgement, 59
lifting, 55, 56, 60
matching, 67, 68, 72
operation, 55, 60
ordering, 55, 57, 59
rewrite rule, 70
rewriting, 71, 73
strengthening, 62
subject reduction, 73
substitution, 55–57, 60, 61
update, 54
variable, 53, 58
weakening, 62

unification, 31, 42, 43, 49
completeness, 35
function, 32
soundness, 34

uniformity, 44, 45
unknown, 11

set, 14

variable environment, 66, 71

weak equivalence, 28

83

References

[Aoto and Kikuchi, 2016] Aoto, T. and Kikuchi, K. (2016). A Rule-Based Pro-
cedure for Equivariant Nominal Unification. Work presented in HOR 2016,
http://www.nue.ie.niigata-u.ac.jp/ aoto/research/papers/report/equnif.pdf. 3

[Avelar et al., 2014] Avelar, A. B., Galdino, A. L., de Moura, F. L. C., and Ayala-Rincón,
M. (2014). First-order Unification in the PVS Proof Assistant. Logic Journal of the
IGPL, 22(5):758–789. 4, 17, 23

[Ayala-Rincón and Kamareddine, 2001] Ayala-Rincón, M. and Kamareddine, F. (2001).
Unification via the λse-Style of Explicit Substitution. Logic Journal of the IGPL,
9(4):489–523. 2

[Ayala-Rincón et al., 2016a] Ayala-Rincón, M., Fernández, M., Gabbay, M. J., and
Rocha-Oliveira, A. C. (2016a). Checking Overlaps of Nominal Rewriting Rules. Elec-
tronic Notes in Theoretical Computer Science, 323:39 – 56. Proceedings of the Tenth
Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2015). 3, 8,
9, 79

[Ayala-Rincón et al., 2016b] Ayala-Rincón, M., Fernández, M., and Rocha-Oliveira, A. C.
(2016b). Completeness in PVS of a Nominal Unification Algorithm. Electronic Notes
in Theoretical Computer Science, 323:57 – 74. Proceedings of the Tenth Workshop on
Logical and Semantic Frameworks, with Applications (LSFA 2015). 4, 5

[Aydemir et al., 2007] Aydemir, B., Bohannon, A., and Weihrich, S. (2007). Nominal
Reasoning Techniques in Coq (Extended Abstract). In Proc. of the 1st Int. Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP), ENTCS,
pages 69–77. 7

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998). Term rewriting and all
that. Cambridge UP. 2, 45, 53

[Barendregt et al., 1983] Barendregt, H., Coppo, M., and Dezani-Ciancaglini, M. (1983).
A Filter Lambda Model and the Completeness of Type Assignment. J. Symb. Log.,
48(4):931–940. 6

[Calvès, 2010] Calvès, C. (2010). Complexity and Implementation of Nominal Algorithms.
PhD thesis, King’s College London. 4, 23, 42

[Calvès, 2013] Calvès, C. (2013). Unifying Nominal Unification. In 24th International
Conference on Rewriting Techniques and Applications, RTA 2013, pages 143–157. 5

84

[Calvès and Fernández, 2010] Calvès, C. and Fernández, M. (2010). Matching and α-
equivalence check for nominal terms. J. Comput. Syst. Sci., 76(5):283–301. 3, 42,
79

[Calvès and Fernández, 2010] Calvès, C. and Fernández, M. (2010). The First-Order
Nominal Link. In Logic-Based Program Synthesis and Transformation - 20th Interna-
tional Symposium, LOPSTR 2010, Revised Selected Papers, pages 234–248. 5

[Cheney, 2004] Cheney, J. (2004). The Complexity of Equivariant Unification. In Au-
tomata, Languages and Programming: 31st Int. Colloquium, ICALP 2004, pages 332–
344. 42

[Cheney, 2005] Cheney, J. (2005). Relating Nominal and Higher-Order Pattern Unifica-
tion. In Proceedings of the 19th International Workshop on Unification (UNIF 2005),
pages 104–119. 4

[Cheney, 2009] Cheney, J. (2009). A Simple Nominal Type Theory. Electr. Notes Theor.
Comput. Sci., 228:37–52. 10

[Cheney, 2012] Cheney, J. (2012). A Dependent Nominal Type Theory. Logical Methods
in Computer Science, 8(1). 10

[Cheney and Urban, 2004] Cheney, J. and Urban, C. (2004). α-Prolog: A Logic Pro-
gramming Language with Names, Binding and α-Equivalence. In Logic Programming,
20th International Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004,
Proceedings, pages 269–283. 8

[Clouston, 2007] Clouston, R. A. (2007). Closed terms (unpublished notes). Available
from http://cs.au.dk/~ranald/closedterms.pdf. 43

[Constable and Moczydlowski, 2009] Constable, R. and Moczydlowski, W. (2009). Ex-
tracting the resolution algorithm from a completeness proof for the propositional cal-
culus. Annals of Pure and Applied Logic, 161(3):337–348. 80

[Copello et al., 2016] Copello, E., Tasistro, A., Szasz, N., Bove, A., and Fernández, M.
(2016). Alpha-Structural Induction and Recursion for the Lambda Calculus in Con-
structive Type Theory. Electr. Notes Theor. Comput. Sci., 323:109–124. 7

[Coppo and Dezani-Ciancaglini, 1978] Coppo, M. and Dezani-Ciancaglini, M. (1978). A
New Type Assignment for λ-terms. Archiv für mathematische Logik und Grundlagen-
forschung, 19(1):139–156. 6

[Coppo et al., 1981] Coppo, M., Dezani-Ciancaglini, M., and Venneri, B. (1981). Func-
tional Characters of Solvable Terms. Mathematical Logic Quarterly, 27(26):45–58. 6

[Domínguez and Fernández, 2014] Domínguez, J. and Fernández, M. (2014). Relating
nominal and higher-order rewriting. In Mathematical Foundations of Computer Science
2014 - 39th Int. Symposium, MFCS 2014. Proc., Part I, volume 8634 of LNCS, pages
244–255. Springer. 42, 43, 54

85

http://cs.au.dk/~ranald/closedterms.pdf

[Dowek et al., 2000] Dowek, G., Hardin, T., and Kirchner, C. (2000). Higher-order Uni-
fication via Explicit Substitutions. Information and Computation, 157(1/2):183–235.
2

[Fairweather, 2014] Fairweather, E. (2014). Type Systems for Nominal Terms. PhD thesis,
King’s College London. 9, 10, 11, 71, 74, 80

[Fairweather and Fernández, 2016] Fairweather, E. and Fernández, M.
(2016). Typed Nominal Rewriting. Submitted. Available from
http://www.inf.kcl.ac.uk/staff/maribel/papers.html. 7, 10, 74, 76

[Fairweather et al., 2011] Fairweather, E., Fernández, M., and Gabbay, M. J. (2011).
Principal Types for Nominal Theories. In FCT, pages 160–172. 10

[Fairweather et al., 2015] Fairweather, E., Fernández, M., Szasz, N., and Tasistro, A.
(2015). Dependent Types for Nominal Terms with Atom Substitutions. In 13th Inter-
national Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1-3,
2015, Warsaw, Poland, pages 180–195. 10

[Fernández and Gabbay, 2010] Fernández, M. and Gabbay, M. (2010). Closed Nominal
Rewriting and Efficiently Computable Nominal Algebra Equality. In Proc. 5th Int.
Workshop on Logical Frameworks and Meta-languages: Theory and Practice, LFMTP
2010, pages 37–51. 2, 40, 41, 44, 48, 49

[Fernández and Gabbay, 2006] Fernández, M. and Gabbay, M. J. (2006). Curry-Style
Types for Nominal Terms. In Types for Proofs and Programs, International Workshop,
TYPES 2006, Nottingham, UK, April 18-21, 2006, Revised Selected Papers, pages 125–
139. 9

[Fernández and Gabbay, 2007] Fernández, M. and Gabbay, M. J. (2007). Nominal rewrit-
ing. Information and Computation, 205(6):917–965. 1, 3, 5, 8, 13, 28, 29, 30, 38, 41,
42, 43, 44, 45, 46, 47, 48, 52, 53, 54, 70, 79

[Fernández and Rubio, 2012] Fernández, M. and Rubio, A. (2012). Nominal Completion
for Rewrite Systems with Binders. In Automata, Languages, and Programming, volume
7392 of LNCS, pages 201–213. Springer. 80

[Gabbay and Pitts, 1999] Gabbay, M. and Pitts, A. M. (1999). A New Approach to
Abstract Syntax Involving Binders. In 14th Annual IEEE Symposium on Logic in
Computer Science, Trento, Italy, July 2-5, 1999, pages 214–224. 1

[Galdino and Ayala-Rincón, 2009] Galdino, A. L. and Ayala-Rincón, M. (2009). A PVS
Theory for Term Rewriting Systems. Electr. Notes Theor. Comput. Sci., 247:67–83.
17, 23

[Galdino and Ayala-Rincón, 2010] Galdino, A. L. and Ayala-Rincón, M. (2010). A For-
malization of the Knuth-Bendix(-Huet) Critical Pair Theorem. J. Autom. Reasoning,
45(3):301–325. 23, 80

[Hindley, 2002] Hindley, J. R. (2002). Basic Simple Type Theory. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press. 6

86

[Huet, 1975] Huet, G. P. (1975). A Unification Algorithm for Typed ~λ-Calculus. Theo-
retical Computer Science, 1:27–57. 2

[Huet, 1980] Huet, G. P. (1980). Confluent Reductions: Abstract Properties and Ap-
plications to Term Rewriting Systems: Abstract Properties and Applications to Term
Rewriting Systems. J. of the ACM, 27(4):797–821. 2

[Kamareddine and Nour, 2007] Kamareddine, F. and Nour, K. (2007). A Completeness
Result for a Realisability Semantics for an Intersection Type System. Ann. Pure Appl.
Logic, 146(2-3):180–198. 57, 58

[Klop et al., 1993] Klop, J.-W., van Oostrom, V., and van Raamsdonk, F. (1993). Com-
binatory reduction systems, introduction and survey. Theoretical Computer Science,
121:279–308. 1

[Knuth and Bendix, 1970] Knuth, D. and Bendix, P. (1970). Simple word problems in
universal algebras. In Computational Problems in Abstract Algebra. Pergamon Press,
Oxford. 2

[Kumar and Norrish, 2010] Kumar, R. and Norrish, M. (2010). (Nominal) Unification
by Recursive Descent with Triangular Substitutions. In Interactive Theorem Proving,
First International Conference, ITP 2010, volume 6172 of Lecture Notes in Computer
Science, pages 51–66. Springer. 8, 15

[Lengrand et al., 2004] Lengrand, S., Lescanne, P., Dougherty, D. J., Dezani-Ciancaglini,
M., and van Bakel, S. (2004). Intersection Types for Explicit Substitutions. Inf.
Comput., 189(1):17–42. 9

[Levy and Villaret, 2010] Levy, J. and Villaret, M. (2010). An Efficient Nominal Uni-
fication Algorithm. In Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, RTA 2010, pages 209–226. 4, 5

[Levy and Villaret, 2012] Levy, J. and Villaret, M. (2012). Nominal unification from a
higher-order perspective. ACM Transactions on Computational Logic, 13(2):10. 4

[Mayr and Nipkow, 1998] Mayr, R. and Nipkow, T. (1998). Higher-order rewrite systems
and their confluence. Theoretical Computer Science, 192:3–29. 1

[Newman, 1942] Newman, M. H. A. (1942). On Theories with a Combinatorial Definition
of “Equivalence”. The Annals of Mathematics, 43(2):pp. 223–243. 2

[Owre and Shankar, 1997] Owre, S. and Shankar, N. (1997). Abstract Datatypes in
PVS. Technical report, SRI International. http://pvs.csl.sri.com/papers/csl-93-9/csl-
93-9.pdf. 21

[Owre and Shankar, 1999] Owre, S. and Shankar, N. (1999). The
Formal Semantics of PVS. Technical report, SRI International.
http://shemesh.larc.nasa.gov/fm/papers/Owre-CR-1999-209321-Semantics-PVS.pdf.
16, 19

87

[Paulson, 1985] Paulson, L. C. (1985). Verifying the Unification Algorithm in LCF. Sci-
ence of Computer Programming, 5(2):143–169. 23

[Pitts, 2003] Pitts, A. M. (2003). Nominal Logic, a First Order Theory of Names and
Binding. Inf. Comput., 186(2):165–193. 10

[Pitts et al., 2015] Pitts, A. M., Matthiesen, J., and Derikx, J. (2015). A Dependent Type
Theory with Abstractable Names. Electr. Notes Theor. Comput. Sci., 312:19–50. 10

[Pottier, 2006] Pottier, F. (2006). An Overview of Cαml. Electr. Notes Theor. Comput.
Sci., 148(2):27–52. 8

[Rocha-Oliveira and Ayala-Rincón, 2012] Rocha-Oliveira, A. C. and Ayala-Rincón, M.
(2012). Formalizing the confluence of orthogonal rewriting systems. In Proc. 7th
Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2012, pages
145–152. 53

[Rocha-Oliveira et al., 2016] Rocha-Oliveira, A. C., Galdino, A. L., and Ayala-Rincón, M.
(2016). Confluence of Orthogonal Term Rewriting Systems in the Prototype Verification
System. Journal of Automated Reasoning, pages 1–21. 2, 17, 80

[Rosen, 1973] Rosen, B. K. (1973). Tree-Manipulating Systems and Church-Rosser The-
orems. J. of the ACM, 20(1):160–187. 2

[Russell, 1908] Russell, B. (1908). Mathematical Logic as Based on the Theory of Types.
American Journal of Mathematics, 30(3):222–262. 5

[Schmidt-Schauss et al., 2016] Schmidt-Schauss, M., Kutsia, T., Levy, J., and Villaret,
M. (2016). Nominal Unification of Higher Order Expressions with Recursive Let. In
Pre-proceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016). 4

[Shankar et al., 2001] Shankar, N., Owre, S., Rushby, J. M., and Stringer-Calvert,
D. W. J. (2001). PVS Prover Guide. Technical report, SRI International.
http://pvs.csl.sri.com/doc/pvs-prover-guide.pdf. 16, 23

[Shinwell et al., 2003] Shinwell, M. R., Pitts, A. M., and Gabbay, M. J. (2003). Freshml:
programming with binders made simple. SIGPLAN Notices, 38(9):263–274. 8

[Stehr, 2000] Stehr, M.-O. (2000). CINNI - A Generic Calculus of Explicit Substitutions
and its Application to λ- ς- and π-Calculi. Electronic Notes in Theoretical Computer
Science, 36:70–92. The 3rd Int. Workshop on Rewriting Logic and its Applications. 1

[Suzuki et al., 2015] Suzuki, T., Kikuchi, K., Aoto, T., and Toyama, Y. (2015). Con-
fluence of Orthogonal Nominal Rewriting Systems Revisited. In 26th Int. Conf. on
Rewriting Techniques and Applications (RTA 2015), volume 36 of LIPIcs, pages 301–
317. 3, 8, 46, 47, 48, 54, 79

[Suzuki et al., 2016] Suzuki, T., Kikuchi, K., Aoto, T., and Toyama, Y. (2016). Critical
Pair Analysis in Nominal Rewriting. In 7th International Symposium on Symbolic
Computation in Software Science, SCSS 2016, Tokyo, Japan, March 28-31, 2016, pages
156–168. 3, 8, 9, 79

88

[Thiemann, 2013] Thiemann, R. (2013). Formalizing bounded increase. In Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-
26, 2013. Proceedings, pages 245–260. 2

[Urban, 2004] Urban, C. (2004). Nominal Unification. http://www.inf.kcl.ac.uk/staff/
urbanc/Unification. 5, 8, 10, 27, 29, 34, 79

[Urban, 2008] Urban, C. (2008). Nominal Techniques in Isabelle/HOL. J. Autom. Rea-
soning, 40(4):327–356. 7

[Urban, 2010] Urban, C. (2010). Nominal Unification Revisited. In Proceedings 24th
International Workshop on Unification, UNIF 2010, volume 42 of Electronic Proceedings
in Theoretical Computer Science, pages 1–11. 5, 8, 10, 27, 29, 30, 31, 78

[Urban et al., 2004] Urban, C., Pitts, A. M., and Gabbay, M. (2004). Nominal Unifica-
tion. Theoretical Computer Science, 323(1-3):473–497. 3, 4, 5, 8, 10, 13, 29, 30, 31, 32,
42, 78

[van Bakel, 1992] van Bakel, S. (1992). Complete restrictions of the intersection type
discipline. Theor. Comput. Sci., 102(1):135–163. 6, 56

[van Bakel, 1993] van Bakel, S. (1993). Essential intersection type assignment. In Foun-
dations of Software Technology and Theoretical Computer Science, 13th Conference,
Bombay, India, December 15-17, 1993, Proceedings, pages 13–23. 79

[van Bakel, 1995] van Bakel, S. (1995). Intersection type assignment systems. Theor.
Comput. Sci., 151(2):385–435. 6, 9, 10, 56

[van Bakel, 2011] van Bakel, S. (2011). Strict intersection types for the lambda calculus.
ACM Comput. Surv., 43(3):20. 60

[van Bakel et al., 1996] van Bakel, S., Barbanera, F., and Fernández, M. (1996). Rewrite
Systems with Abstraction and beta-Rule: Types, Approximants and Normalization. In
Programming Languages and Systems - ESOP’96, 6th European Symposium on Pro-
gramming, Linköping, Sweden, April 22-24, 1996, Proceedings, pages 387–403. 81

[van Bakel and Fernández, 1997] van Bakel, S. and Fernández, M. (1997). Normalization
results for typeable rewrite systems. Inf. Comput., 133(2):73–116. 9, 10, 56, 57, 58, 62,
65, 80

[Ventura et al., 2015] Ventura, D. L., Kamareddine, F., and Ayala-Rincón, M. (2015).
Explicit Substitution Calculi with de Bruijn Indices and Intersection Type Systems.
Logic Journal of the IGPL, 23(2):295–340. 9

89

	Dedicatória
	Agradecimentos
	Acknowledgements
	Resumo
	Abstract
	Introduction
	Related work
	Contributions

	Preliminaries
	Nominal Syntax
	PVS

	Nominal Unification in PVS
	Specification
	Freshness and -equivalence

	A Direct Formalisation of Transitivity of -equivalence
	Minimal Freshness Contexts
	Nominal unification algorithm

	Ambiguity of Nominal Rules
	Nominal Rewriting
	Confluence of Nominal Rewriting
	Critical Pair Criterion and Orthogonality
	Criterion for -stability

	Better Criteria for Confluence of Closed Rewriting

	Nominal Essential Intersection Types
	Types, ordering and operations
	Type Inference System and Basic Properties
	Typed Matching and Typed Rewrite Relation
	Subject Reduction

	Conclusions and Future Work
	References

