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Abstract 

 

Moreira, L.P. Uncertainty analysis and joint inversion for improvement of crustal 

imaging. XX pp, doctoral dissertation. University of Brasília, Brazil, 2013. 

 

The aim of this work is to present two new methodologies to improve crustal imaging 

using joint inversion of multiple data set. The first proposed method is the uncertainties 

analysis of the joint inversion of receiver function and surface waves dispersion. Joint 

inversions of these two data groups have recently become popular due to the 

improvement to reduce the non-uniqueness of seismic velocities imaging. However, the 

uncertainties of calibrated models are usually overlooked or ignored and the 

methodologies applied for uncertainty assessment have no formal formulation. It is 

proposed a quantitative method for uncertainty assessment using observation samples 

prediction, usually applied for hydro-geophysics and environment modeling. The 

methodology is tested in synthetic data and applied in field data collected from the 

seismic station POPB, part of the Brazilian Lithospheric Seismic Project, located in the 

Paraná Basin, southeast Brazil. The results of these tests show reliable range of values 

for the inverted parameters from 0.111–0.412 km/s (2.5% – 9.2%), and 0.110–0.341 

km/s (2.5% – 7.9%) for synthetic and field tests respectively. The second proposed 

method is the joint inversion of receiver function, surface waves dispersion and 

magnetotelluric data for 2D crust modelling. The inversion methodology uses a Gauss-

Marquardt-Levenberg algorithm to minimize a multi-component objective function with 

a cross-gradient constraint (geometric structure similarity of different physical 

parameters). The proposed procedure was tested using synthetic data from realistic 1D 

seismic models co-located with a 2D magnetotelluric profile. Results show improved 

resolution in the estimated resistivity structure compared to the traditional inversion of 

resistivity parameters using only magnetotelluric data. Improvements include resolving lateral 

variations and depth of discontinuities, and a high-resistivity zone underlying a high-

conductivity zone (500-fold contrast). For the seismic 1D models, the absolute values of layer 

shear-wave velocity are closer (+/-3%) to the synthetic model crustal structures demonstrating 

benefits of the joint inversion. 
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Resumo 

 

Moreira, LP Análise de incerteza e inversão conjunta para aprimoramento da 

modelagem crustal. XX pp, tese de doutorado. Universidade de Brasília, Brasil, 2013. 

 

O objetivo deste trabalho é apresentar duas novas metodologias para aprimorar a 

modelagem crustal usando inversão conjunta de múltiplos dados geofísicos. O primeiro 

método proposto é a análise das incertezas da inversão conjunta da função do receptor e 

dispersão de ondas superficiais. Inversões conjuntas destes dois grupos de dados estão 

se tornando populares devido à capacidade de reduzir a não-unicidade em modelos de 

velocidades de ondas sísmicas. No entanto, as incertezas dos modelos calibrados são 

geralmente negligenciadas ou ignoradas e as metodologias utilizadas não possuem 

formulação formal. É proposto, portanto, um método quantitativo de determinação de 

incertezas a partir da predição de amostras observadas, normalmente aplicada para 

hidro-geofísica e modelagem ambiental. A metodologia é testada em dados sintéticos e 

aplicada em dados de campo coletados pela estação sismográfica POPB, parte do 

Brazilian Lithospheric Seismic Project, localizada na Bacia do Paraná, sudeste do 

Brasil. Os resultados obtidos nesses testes mostram uma faixa de valores dos parâmetros 

invertidos de 0,111 a 0,412 km/s (2,5% a 9,2%), e 0,110 a 0,341 km/s (2,5% a 7,9%) 

para os testes com dados sintéticos e de campo, respectivamente. O segundo método 

proposto é a inversão conjunta de função do receptor, dispersão de ondas de superfície e 

dados magnetotelúricos para modelagem crustal 2D. A metodologia de inversão usa o 

algoritmo de Gauss-Marquardt-Levenberg para minimizar uma função objectivo multi-

componente com um vínculo estrutural do gradiente cruzado (similaridade estrutural 

geométrica dos diferentes parâmetros físicos). O procedimento proposto foi testado 

utilizando dados sintéticos de modelos realísticos de perifs 1D de velocidade de ondas 

sísmicas co-localizados com um perfil 2D de resistividade. Os resultados mostram uma 

melhora na estrutura de resistividade estimada em comparação com a inversão de 

parâmetros de resistividade utilizando apenas dados magnetotelúricos. As melhorias 

incluem a resolução de variações laterais da profundidade das descontinuidades, e a 

identificação da zona de alta resistividade subjacente a uma zona de alta condutividade. 

Para os modelos 1D de velocidades de ondas sísmicas, os valores absolutos da 

velocidade de onda S das camadas do perfil são próximos dos valores sintéticos (+ / -

3%), demonstrando os benefícios da inversão conjunta. 
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1. – Introdução 

 

A inversão numérica representa uma importante ferramenta na determinação de 

modelos geofísicos realísticos e o aprimoramento dessa ferramenta tem se mostrado 

uma necessidade recorrente em aplicações como exploração mineral, de óleo e gás 

natural e modelagem de estruturas crustais. A determinação de modelos geofísicos a 

partir de dados observados apresenta diversas restrições e desafios, tais como 

instabilidade numérica, não unicidade, limitação no número de parâmetros invertidos, 

precisão na modelagem direta, entre outros (Tarantola, 2005). 

Com a finalidade de minimizar ou eliminar tais restrições e dificuldades várias 

abordagens são frequentemente utilizadas para estabilização e convergência da inversão 

numérica. A não unicidade é causada pela ocorrência de múltiplos mínimos na função 

objetivo, dada pela diferença entre os valores observados e as amostras de saída do 

modelador direto, gerando múltiplas soluções. Esse problema pode ser contornado 

através da utilização de vários modelos iniciais distintos (Ammon, 1991) ou algoritmos 

de inversão baseados em buscas globais, tais como algoritmos evolutivos (Lawrence 

and Wiens 2004, An and Assumpção, 2004) ou Bayesianos (Bodin et al, 2012). A 

instabilidade numérica é geralmente causada pelo número excessivo de parâmetros 

invertidos, pela não-linearidade na relação entre parâmetros e observações e também 

pela ocorrência de correlação entre os diferentes parâmetros (Doherty and Johnston, 

2003). Essa instabilidade pode ser minimizada através da inclusão de restrições nessas 

relações, como vínculos de suavidade (Tikonov e Arsenin, 1977), estruturais (Gallardo 

e Meju, 2007) ou inclusão de informações a priori, como por exemplo informações de 

parâmetros físicos conhecidos. 

Diferentes dados geofísicos fornecem diferentes informações no processo de 

inversão, relacionando diferentes parâmetros físicos a diferentes dados observados 

(Gallardo e Meju, 2003, 2007; Julià et al. 2000). A relação entre esses diferentes 

parâmetros, portanto, pode prover informações geológicas ou estruturais não 

observáveis em uma análise individual. Assim, a análise conjunta da inversão numérica 

de diferentes dados geofísicos, fornece informação adicional na calibração e validação 

de modelos (Ozalaybey et al, 1997, Bedrosian et al, 2007). A inversão conjunta consiste 

em agregar esses diferentes dados geofísicos em um único esquema de calibração, 

compondo uma única função objetivo multi-componente. As informações adicionais 

incorporadas resultam em restrições adicionais nos dados utilizados, consequentemente 
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reduzindo a não-unicidade do problema, e tornando o processo mais imune a ruídos nos 

dados observados utilizados. O aumento no número de parâmetros invertidos, 

entretanto, acarreta geralmente em um aumento na instabilidade numérica no processo 

da inversão e por esse motivo requerem vínculos adicionais e relações matemáticas 

entre os diferentes parâmetros calibrados (Gallardo e Meju, 2007; Zevallos et al, 2009). 

A inversão é geralmente realizada iterativamente, a partir de métodos numéricos 

que atualizam os valores dos parâmetros a fim de diminuir ao máximo a diferença entre 

os dados observados e os dados gerados por modelos computacionais (função objetivo). 

Por se tratar de uma solução numérica iterativa o valor mínimo da função objetivo, que 

hipoteticamente representa o modelo teórico que melhor se aproxima do modelo real, 

nem sempre é possível de ser alcançado, especialmente em problemas mal-postos 

(Tikonov e Arsenin, 1977), principalmente devido ao ruído nos dados observados e 

correlação entre os parâmetros invertidos. Isso acarreta em incertezas associadas aos 

modelos obtidos no processo de calibração. A determinação dessas incertezas é 

frequentemente negligenciada ou mesmo ignorada na calibração de modelos, e muitas 

vezes analisada de forma qualitativa e simplificada. No caso da inversão conjunta de 

dados de função do receptor e dispersão de ondas superficiais as incertezas são 

geralmente associadas às variâncias (ou desvio-padrão) dos parâmetros, obtidas a partir 

da matriz de co-variância calculada no processo de inversão, assumindo uma 

distribuição Normal em torno do valor estimado. Essa abordagem é falha ao assumir tal 

distribuição, e ignorar os demais elementos da matriz de co-variância, implicitamente 

sugerindo a independência entre os parâmetros invertidos, o que raramente acontece em 

inversão geofísica. Outros métodos mais qualitativos são usados através da calibração 

de modelos com diferentes subgrupos de dados observados, determinando uma faixa de 

valores para os parâmetros estudados. Dentre os métodos quantitativos de determinação 

das incertezas associadas à inversão geofísica estão os métodos Bayesianos (Gallager e 

Doherty, 2007) de calibração, que atualizam os parâmetros calibrados gerando 

distribuições a posteriori a partir de uma distribuição a priori dos parâmetros. Essa 

distribuição calculada representa a probabilidade de um determinado parâmetro assumir 

um valor específico. Esses métodos, contudo, representam as incertezas em termos 

probabilísticos, além de demandarem alto esforço computacional. 

A presente tese tem como proposta a apresentação de metodologias que auxiliem 

a aprimorem a inversão de dados geofísicos. Assim, foram desenvolvidas duas 

metodologias a serem apresentadas: a determinação das incertezas associadas à inversão 
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conjunta de função do receptor e dispersão de ondas de superfície, e a inversão conjunta 

de dados de função do receptor, dispersão de ondas superficiais e magnetotelúrico para 

modelagem crustal. 

A primeira metodologia propõe um método quantitativo para determinação das 

incertezas do processo de inversão baseado no mapeamento de uma região de confiança 

da função objetivo definida por um valor limiar dessa função, que representa o conjunto 

de diferentes modelos que podem ser considerados calibrados, ou seja, se aproximam do 

modelo real, gerando assim estatisticamente um intervalo de valores que cada parâmetro 

pode assumir dentro do intervalo de confiança. Esse mapeamento é feito através da 

predição de valores observados (Vecchia e Cooley, 1987). A predição consiste em 

determinar o maior (ou o menor) valor que uma certa observação pode assumir 

considerando que o modelo se mantenha calibrado, ou seja, que a função objetivo se 

mantenha abaixo de um limite previamente estabelecido. Esse ponto da função objetivo 

(valor máximo de uma observação dentro de um limiar da função objetivo), 

determinado por um conjunto de parâmetros define um ponto crítico. Considerando que 

diferentes observações são independentes entre si, e que possuem diferentes sentidos de 

crescimento no domínio da função objetivo, a predição de todas as amostras resultarão 

em pontos críticos que mapeam o contorno de uma região de mínimo da função 

objetivo, resultando em uma distribuição estatística de valores dos parâmetros a partir 

da definição de um intervalo de confiança. 

A segunda metodologia propõe a inversão conjunta de três dados geofísicos 

distintos: traço de função do receptor, curva de dispersão de ondas superficiais e 

resistividade e fase de modos transverso elétrico (TE) e transverso magnético (TM) de 

dados magnetotelúricos. Esses dados sismológicos modelam a velocidade de ondas 

sísmicas em subsuperfície, que são sensíveis à densidade das rochas e suas propriedades 

elásticas de compressão mecânica (Aki e Richards, 1980; Berteussen, 1977), enquanto 

que dados magnetotelúricos modelam a resistividade das rochas (Korja, 1997; Simpson 

e Bahr, 2005) e são sensíveis ao conteúdo de fluidos, porosidade e conteúdo mineral 

(Keller, 1989). A agregação desses dois parâmetros geofísicos em um mesmo processo 

de inversão pode ser aprimorado levando em consideração que diferentes litologias 

apresentam diferentes velocidades de ondas sísmicas (Christensen and Mooney, 1995) e 

diferentes resistividades elétricas (Korja, 1997), e portanto descontinuidades 

encontradas em modelos de resisitividade elétrica presumem descontinuidades co-

localizadas de velocidades de ondas sísmicas. Para realçar a presença de 
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descontinuidades co-localizadas em ambos modelos, um vínculo estrutural do gradiente 

cruzado (Gallardo e Meju, 2003, 2007) é introduzido, incorporando também um vínculo 

de suavidade, estabilizando a inversão numérica. 

 

Apresentação da tese 

 

Esta tese é dividida em quatro capítulos cuja organização é descrita a seguir: 

 

 O capítulo 1 apresenta a introdução dos assuntos a serem abordados, envolvendo 

as justificativas e objetivos apresentados. 

 No capítulo 2 é apresentado o primeiro artigo denominado “Uncertainty 

Analysis in the Joint Inversion of Receiver Function and Surface-Wave Dispersion, 

Paraná Basin, Southeast Brazil”, submetido ao Bulletin of the Seismological Society of 

America (ISSN 0037-1106) em maio de 2012 e aceito para publicação, com data 

prevista para junho de 2013. 

 No capítulo 3 é apresentado o segundo artigo denominado “Joint inversion of 

receiver function, surface wave dispersion, and magnetotelluric data for 2D crustal modeling”, 

submetido ao Journal of Applied Geophysics (ISSN 0926-9851) em fevereiro de 2013. 

 O capítulo 4 sintetiza as principais conclusões da pesquisa. 
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Abstract 

 

The joint inversion of receiver function and surface-wave dispersion data is popular 

because it reduces the non-uniqueness of the modeled subsurface seismic velocities. 

Whereas various inverse procedures have been used in joint subsurface imaging, the 

evaluation of uncertainties in the estimated parameter distribution is usually overlooked 

or considered qualitatively. We present a quantitative method for determination of 

uncertainty in velocity models estimated by the joint inversion of receiver function and 

surface-wave data by using the prediction of each observation sample to map the 

objective function surface and create a statistical distribution of estimated model 

parameters. The proposed methodology is evaluated in a controlled test using synthetic 
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data simulating a realistic shear wave velocity model. We then apply the method to field 

data recorded at the POPB seismic station in the Paraná Basin, southeast Brazil. The 

respective range of uncertainty for modeled S-wave velocity distributions in the 

synthetic and field tests were 0.111 – 0.412 (2.5-9.2 %) km/s, and 0.110-0.341 km/s 

(2.5-7.9 %). 

 

2.1 – Introduction 

 

The numerical inverse process used to estimate a seismic velocity model 

contains uncertainty due to forward modeling errors, data noise, and local minima, 

especially in cases of non-linearity and high correlation between inverted parameters 

(Doherty and Johnston, 2003; Julià et al. 2000). Besides being able to qualitatively 

improve the imaging process (Gallardo and Meju, 2004; Moorkamp et al. 2010), the 

joint inverse procedure can reduce uncertainties in the estimated velocity structure. 

Usually the joint inversion of receiver functions (RF) and surface wave dispersion 

(SWD) is based on linearized methods (Julià et al, 2000), evolutionary algorithms 

(Lawrence and Wiens 2004, An and Assumpção, 2004) or Bayesian methods (Bodin et 

al, 2012). The inversion process seeks the model having the minimum difference 

between predictions from a numerical forward model and field observed data using a 

least-square minimization scheme (Gallagher and Doherty, 2007a). A velocity model is 

considered optimal when this function reaches a minimum value. Unfortunately, the 

estimated velocity model is nonunique; that is, there are an infinite number of parameter 

combinations which satisfy the objective function (Tarantola, 2005). Therefore, the 

assessment of different velocity models satisfying the objective function criterion can 

provide information about the magnitude of the uncertainty in the joint inverse process. 
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The uncertainties in estimated parameter values are often expressed as 

confidence levels determined from the model covariance matrix calculated as part of the 

inversion process (Julià et al, 2000). Unfortunately, this approach assumes linearity and 

independence of parameters which is not always a good approximation (Gallagher and 

Doherty, 2007b). An alternative Bayesian approach (Gelman et al, 2004) calculates an a 

posteriori probability distribution of parameter values and their associated uncertainties 

based on an a priori distribution. Such methods can provide a likelihood measure for 

each inverted velocity value; however, the computational effort can be too high for 

complex or highly nonlinear joint geophysical models. 

In this paper, the aim is to evaluate the efficacy of a nonlinear prediction 

procedure for determining the magnitude of uncertainty in velocity models (Vecchia and 

Cooley, 1987; Gallagher and Doherty, 2007a; Friedel, 2011). In this procedure, we 

hypothesize that estimated models having the same (or very similar) final objective 

function values are equally valid. The objective is to estimate the statistical distribution 

of velocities associated with models determined using the joint RF-SWD inverse 

procedure for synthetic data, and field data collected at the POPB seismic station, 

Parana, Brazil. By applying the proposed procedure to all velocities in the observed 

profile, an objective function minimum region can be mapped providing the statistical 

distribution. 

 

2.2. – Methodology 

 

2.2.1. – Linearized Inversion 
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The first step associated with analyzing uncertainty in the joint inversion is 

model estimation; that is, finding a parameter set which characterizes a 1-dimensional 

(1D) subsurface seismic (S) velocity profile. In this study, we use the Gauss-Marquardt-

Levenberg algorithm (see Data and Resources section) based on the objective function 

negative gradient. In this case, we define a linear system as: 

 

X b = c,       (1) 

 

where the constant elements in the m x n matrix X represent the structural aspects of the 

model and are independent from vector b, a n-dimension vector containing the S 

velocity parameters. c is a m dimensional vector with the observation samples. The 

analytical solution of equation (1) depends on the system complexity, so it is solved by 

minimizing iteratively the function Φ, defined by: 

 

 = (c – Xb)
t
Q(c – Xb)     (2) 

 

where Q is a m x m diagonal matrix with the observation weights (Hill, 1998), and t is 

the transpose of the matrix. Extending this solution to non-linear systems the 

relationship between the parameters and observations can be expressed as: 

 

c = (b)       (3) 

 

where ( ) is a function which maps n-dimensional parameter space into m-dimensional 

observation space, giving the nonquadratic objective function: 
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 = (c –(b))
t
Q(c – (b))      (4) 

 

This function is minimized iteratively replacing the X matrix by the Jacobian 

matrix J with m rows (one for each observation), where the n elements of each row 

represents the derivative of one particular observation with respect to each of the n 

parameters, and the equation (1) is re-written as: 

 

c = c0 + J(b – b0).     (5) 

 

This is a linearization of the non-linear relationship between c and b using 

Taylor’s theorem, thus the minimization is carried out on the following objective 

function 𝛷: 

 

 = (c – c0 – J(b – b0))
t
Q(c – c0 – J(b – b0)),   (6) 

 

where the subscript 0 represents values calculated by the forward model and vectors 

without subscripts are the observation values. 

Minimization of Φ is conducted by iteratively updating the vector b given by: 

 

b – b0 = (J
t
QJ)

-1
J

t
Q(c – c0).      (7) 

 

To stabilize the nonlinear inversion process, the Marquardt parameter α is added. 

Replacing the difference (b – b0) by the update vector u gives: 

 

u = (J
t
QJ + αI)

-1
J

t
Q(c – c0),      (8) 
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where α is the Marquardt parameter, and I is the n x n identity matrix. 

The joint inversion of RF and SWD models involves observations with different 

magnitudes. To handle this, a scaling matrix is introduced, Sii = (J
t
QJ)ii

-1/2
 , in the 

previous equation to normalize the Jacobian matrix elements. The equation (8) 

becomes: 

 

S
-1

u = ((JS)
t
QJS + αS

t
S)

-1
(JS)

t
Q(c – c0),     (9) 

 

which is mathematically identical to equation (8), but numerically more stable. This 

procedure is applied iteratively until the value of the objective function reaches a 

prescribed minimum. 

 

2.2.2. – Prediction 

 

Starting from a previously estimated velocity model, it is possible to find a set of 

parameters (for example, shear-wave (S-wave) velocities) that maximize (or minimize) 

a particular observation sample (for example, the RF value at a particular time or a 

SWD value at a particular period). Under a prediction state, the equation (3) is given by: 

 

s = g(b) ,       (10) 

 

where s is the prediction sample (scalar value) replacing the observation vector c under 

the estimation condition.. Under this condition equation (10) can be rewritten in an 

iterative fashion similarly to equation (5) as: 



13 

 

 

s – s0 = z
t
(b – b0),      (11) 

 

where the subscript 0 represents the previous iteration and z is the sensitivity vector for a 

model output containing the vector b model prediction coefficients, which is an 

equivalent representation of the linear matrix J in equation (5). 

The confidence interval of a prediction is defined by the interval between the 

minimum and maximum prediction that can be made by the model using parameters 

jointly located in a confidence region defined at a specified probability level (Friedel, 

2011). For a non-linear confidence region containing the prediction an approximate 

region may be obtained using the likelihood ratio method (Vecchia and Cooley, 1987), 

the solution is defined by: 

 

Φ(b) – Φ(b) ≤ nr
2
F(n,m-n),    (12) 

 

where Φ(b) is the objective function for a parameter set b, Φ(b) is the nonquadratic 

objective function calculated from the parameters’ optimal values defined by equation 

(4), σ
2

r = Φ(b)/(m-n) is the reference variance calculated during the model estimation 

and F(.) is the F distribution. 

For the prediction of a non-linear model, the boundary of the confidence interval 

can be calculated by minimizing (or maximizing) the prediction s in equation (10) while 

jointly constraining parameter values within the confidence region defined in (12). 

Using the method of Langrange multipliers, the prediction of nonlinear confidence 

limits can be calculated using the equation (Cooley and Vecchia, 1987; Vecchia and 

Cooley 1987): 
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𝐛 − 𝐛0 = (𝐉t𝐐𝐉)−1*𝐉t𝐐(𝒄 − 𝒄𝟎) − 𝐳 2𝜆⁄ +,     (13a) 

 

where the Lagrange coefficient λ is defined by: 

 

(
1

2𝜆
) = ± [

Φ(𝐛) + δ − (𝒄 − 𝒄𝟎)
t𝐐(𝒄 − 𝒄𝟎) + (𝒄 − 𝒄𝟎)

t𝐐𝐉(𝐉t𝐐𝐉)−1𝐉t𝐐(𝒄 − 𝒄𝟎)

𝐳t(𝐉t𝐐𝐉)−1𝐳
]

1/2

 

   (13b) 

 

where  is the right side of equation (12). The system of equations (13) is numerically 

stable for over-determined problems, requiring that the number of observations m must 

be higher than the number of parameters n. It is solved once for the plus sign and once 

for the minus sign, defining respectively the maximum and the minimum critical values 

of the prediction sample s inside the confidence region. This numerical solution is 

reached iteratively calculating an upgrade vector (equation 13a) by repeated 

linearization through the Jacobian matrix calculation. 

For example, consider a model with only two parameters p1 and p2. The 

objective function of this system can be represented by a surface, as in figure 1a, where 

the gray area represents a minimum region. The joint-inversion process consists of 

finding the parameter set associated with this region. These nonlinear inversions provide 

non-unique solutions with parameter combinations (different models) and 

corresponding objective function values inside the confidence region defined by a 

model estimation threshold (Φ(b) + δ). A particular sample will have its value increased 

(or decreased) in a certain direction as p1 and p2 change, as shown in figure 2.1b. 

Combining both pictures in figure 2.1c, it is possible to define the critical points, each 
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one consisting in a set of parameters (p1 and p2), in the objective function surface 

corresponding to the maximum and minimum values of the predicted observation for a 

given model. 

 

 

Figure 2.1 – Non-linear system with two model parameters p1 and p2. (a) Objective 

function surface with a minimum region (gray area) defined as sufficient to consider the 

model optimal. (b) Increasing direction of one particular observation sample based on 

parameters variation. (c) Combination of these two pictures (d) showing the maximum 

and minimum critical values for the estimated model. (e) Increasing direction of other 

particular observation sample. (f) Maximum and minimum critical values for the second 

observation. (g) Four critical points representing four model parameter combinations 

inside the objective function estimation threshold region. (adapted with permission from 

Doherty, 2005) 
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The same procedure can then be applied to a different observation providing two 

more critical points at a different location in the confidence region (gray area) and 

consequently two more different combinations of parameters values under the model 

estimation threshold, illustrated by pictures 2.1e to 2.1g. If the number of observations 

used in the model estimation process is large enough and independent, the above 

procedure will result in a model set that maps the objective function confidence region 

and information describing parameters uncertainties. For the joint inversion problem of 

receiver function and surface waves dispersion curves all observation points are related 

to the same parameter vector (S-wave velocity), thus each point of the observation 

samples vector will provide a different confidence interval for the same parameters. In 

the case of receiver functions, adjacent observation samples in a trace are highly 

correlated with critical points very close in the objective function surface. By contrast, 

receiver function observation samples located in different regions in a RF trace 

represent different sub-surface structures and therefore have distant critical points. In a 

similar way, surface-wave dispersion samples represent different depths in a seismic 

velocity profile with non-adjacent samples weakly correlated and critical points distant 

from each other. Hence, this process is applied to all observations in c vector, which 

leads to 2m predictions. Therefore, the computational effort to achieve the full solution 

(critical points population) will depend on the complexity of the inversion problem, the 

defined confidence interval and the number of observations. 

 

2.3. – Synthetic test 

 

The proposed methodology was tested with data generated using a synthetic 
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model portrayed in figure 2.2. This model characterizes a 1D S-velocity profile adapted 

from the IASP91 model (Kennett and Engdahl, 1991) with three layers over a half-

space. The abrupt contrasts between each layer contain the main features usually found 

in crustal modeling using RF and SWD: a sediment layer, the upper and lower crust 

(containing the Conrad and Moho geological discontinuities), and the upper mantle. 

 

 

Figure 2.2 – 1D profile used to generate synthetic seismograms used in the joint 

inversion of receiver function and surface-wave dispersion. 

 

2.3.1. – Receiver functions 

 

To generate synthetic RF traces, we use the Randall algorithm (Randall, 1989) 

based on Kennett's reflection matrix (Kennett, 1983). This algorithm is selected for its 

simplicity (low computational effort) and consistent results for models with horizontal 

and homogeneous layers. Methods available for RF processing include frequency-

domain deconvolution (Langston, 1979), time-domain iterative deconvolution (Ligorria 
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and Ammon, 1999), and the time-domain autoregressive deconvolution (Wu et al, 

2007). For high amplitude and high signal-to-noise events, all of these techniques 

provide similar results. The time-domain methods are not affected by effects introduced 

by water level equalization (Clayton and Wiggins, 1976) applied in the frequency-

domain deconvolution. The iterative time-domain deconvolution is used here due to its 

stability and relatively rapid processing time. 

In crustal modeling, the primary events (P- to S-wave converted phase 

associated with the Moho discontinuity and multiple reverberations in the crust) 

comprising a RF trace follow the incident P-wave, typically occurring in the first 30 

seconds of a seismogram. To ensure correct representation of crustal features, the 

simulated RF traces are generated using 60 seconds of record. To simulate realistic field 

RFs, we also added random noise characterized by a Gaussian distribution and 

amplitude of 2% of the direct P wave in both seismograms (Moorkamp et al., 2010). 

The radial components of several seismograms are then deconvolved with the vertical 

component using the time-domain iterative algorithm (Ligorria and Ammon, 1999) and 

up to 500 iterations. The resulting RF trace is then truncated 2 seconds before and 30 

seconds after the direct P wave resulting in a time series with 400 observation samples. 

The stack of traces (mean of each time sample) is used as observation data in the 

inversion process (vector c, equation 6) with the inverse of each time sample standard 

deviation used as observation weights (Q matrix, equation 6) (Friedel, 2005). To 

enhance the joint inverse procedure, the first 20 samples are assigned zero weights 

because they represent sample information occurring before the direct P-wave. 

 

2.3.2. – Surface wave dispersion 
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Dispersion curves from both surface-wave group and phase velocities can be 

obtained; however, the phase-velocity calculation requires that data from an event are 

recorded by seismic stations located along the same path. Another challenge with SWD 

is that the horizontal components of seismograms are often affected by higher levels of 

noise than the vertical component. The presence of noise in the horizontal components 

makes it difficult to obtain high quality Love-wave dispersion curves especially for long 

periods. For these reasons, only the fundamental Rayleigh-wave mode group velocities 

are processed and incorporated into our inversion. For surface waves, the synthetic 

seismograms and dispersion curve calculations are based on algorithms described in 

Computer Programs in Seismology (see Data and Resources section). Using these 

algorithms, we created observations at 20 periods between 20 and 50 seconds. As with 

RF, 2% random noise was added and the mean of the dispersion curves used as 

observation data with the standard deviation used to calculate observation weights. 

 

2.3.3. – Joint inversion 

 

The synthetic data generated using the previously described procedures were 

jointly inverted using the algorithm described in Linearized Inversion section. A total of 

26 parameter values were estimated, the S-wave velocity for 25 layers with fixed 

thickness (2 km) and the half-space. In the 1D-forward model, the layers are assumed to 

be locally horizontal and homogeneous. In the forward model calculations, the P-wave 

velocity was calculated assuming a fixed Poisson ratio of 0.25 and density calculated 

using the empirical relation of Berteussen (1977). The initial model was characterized 

as a single homogeneous layer over a half-space. Figure 2.3 shows the results of the 

joint inversion including the initial model (dotted), synthetic model (dashed) and 
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estimated model (solid) for the RF and SWD. In general, depth to the sediment-upper 

crust, Conrad and Moho discontinuities were all well modeled using the joint-inverse 

procedure. Whereas the absolute velocity values are in agreement with known values, 

the differences for the upper crustal layer occurring between 6 and 8 km (about than 

2.4%) are slightly greater than for the upper mantle layer (below Moho) between 36 and 

40 km (about 1.8%). These results demonstrate the robustness of RF and SWD joint 

inversion when estimating the S-wave profile. 
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Figure 2.3 – (a) RF and SWD joint inversion results. The dashed profile represents the 

actual (synthetic) model, used to calculate the observation data, the solid profile 

represents the model estimated by the inversion, and the dotted profile is the inversion 

initial model. (b) RF traces of the synthetic model (dashed) and the trace from the 

estimated model (solid). (c) Dispersion curves of synthetic model (pluses) and from the 

estimated model (crosses). 

 

2.3.4. – Observation prediction and uncertainty analysis 

 

The prediction analysis procedure of Vecchia and Cooley (1987), as described in 

the Prediction section, was applied to all RF and SWD observations having non-zero 

weights, with a confidence level of 0.99 (equation 12). Estimates of minima and 

maxima for 275 observation samples (255 RF and 20 SWD samples) resulted in 550 

different critical points (1D models) for quantifying the range of S-wave uncertainty 

with depth. Examples of different critical points location (predicted 1D S-velocity 

model) on the objective function minimum contour for 3 non-adjacent RF observation 

samples (numbers 54, 86, and 226) are shown in figure 2.4. Inspection of this figure 

reveals nonlinear relations among uncertainty associated with different observations. 

The mapping of all possible observation samples minima and maxima are shown in 

figure 2.5, where each 1D model is one critical point calculated by the prediction 

procedure. Notice that some layers show S-wave values that are asymmetrically 

distributed around the initial value (estimated model). This nonlinear relation in 

parameter uncertainty suggests that using linear statistics may lead to an inappropriate 

velocity interpretation. 
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Figure 2.4 – (a) RF trace and three observation samples (54, 86, 224) occurring at 

different time locations, (b) one-dimensional S-velocity profile obtained by maximizing 

(dotted lines) and minimizing (dashed lines) the 3 observation samples in (a). 
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Figure 2.5 – One-dimensional S-velocity profiles obtained from each observation 

sample prediction (black), profile estimated by the joint inversion (red), and model used 

to build the synthetic observation data (blue). 

 

A more appropriate description of the confidence interval for the velocity can be 

obtained by fitting a statistical distribution to the collection of critical values for each 

layer. Some distributions were tested for selected layers (Figure 2.6), above and 

adjacent to the sediment discontinuity (layer 2), below and adjacent to the Conrad 

discontinuity (layer 11), below and adjacent to the Moho (layer 19), showing Normal, t 

location-scale and logistical distributions fit to the data; the t location-scale and/or 

logistic fit better than normal, resulting in improved S-wave velocity uncertainty 

assessment. While the fitted distributions are symmetric and have similar shape to a 

normal distribution, the mean (or median) values differ from the estimated values 

determined in the joint-inverse procedure. This shows that the range of possible values 

for a certain layer is not equally distributed around the estimated value. Figure 2.7 

shows the estimated model and related profiles corresponding to quantiles calculated 
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using the critical values. The limits for each quantile represent the percentage of models 

obtained by the prediction that are contained in each percentile range providing a 

statistical range of values for a defined confident interval, differing from Bayesian 

approach which provides the uncertainties as a probability density function for each 

inverted parameter. These results can be used as a practical measure of possible 

parameter values for each layer assuming that the estimated model is correct. For 

example, at the 95th percentile, the predicted range of velocity in the upper mantle 

(layer between 48 and 50 km depth) is 0.281 km/s whereas the predicted range of 

velocity in the sediment (layer between 2 and 4 km depth) is 0.121 km/s. 
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Figure 2.6 – Probability density functions and statistical distributions that best fit the 

predicted values for (a) the second layer (b) the layer just below the Conrad 

discontinuity, and (c) the layer just below Moho. 

 

 

Figure 2.7 – Uncertainty in the estimated S-wave velocity profile (solid black line) 

including three prediction percentiles: 90th (dashed blue), 95th (dashed green), and 99th 

(dashed red). 

 

2.4. – Application to field data 

 

The proposed prediction method is applied to field data collected at the POPB 

seismic station (22.4565ºS, 52.8368ºW), part of the Brazilian Lithospheric Seismic 

Project (BLSP) located in the Paraná Basin, southeast Brazil. The crustal structure is 

well studied with geophysical results published by several authors (Assumpção et al. 

2002, Assumpção et al., 2004, Snoke & James 1997, An & Assumpção 2006, Juliá et al. 

2008). 
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The surface-wave dispersion curves are taken from Feng et al. (2004) and only 

samples between 20 and 50 seconds of each curve were used (13 samples per curve) in 

the joint inversion. RF traces were calculated using the time-domain iterative method 

(Ligorria and Ammon, 1999) for 6 teleseismic events listed in Table 2.1 containing 320 

samples for each trace with 0.1 second of sampling period. The mean of the traces 

(stack) was used for observation values (vector c in equation 6) and the standard 

deviation for each time sample was used to compose the observation weight matrix, Q 

in equation (6) (Hill, 1998). Figure 2.8 shows the traces of each event and stack trace. 

These data were jointly inverted using the global model of IASP91 (Kennett and 

Engdahl, 1991) as the initial starting model values and the forward model calculations 

used in the controlled tests (Joint Inversion section). Convergence to the estimated 

model took 18 iterations (Figure 2.9) and is similar to results published by Juliá et al. 

(2008) and An & Assumpção (2004). This velocity model has three main seismic 

discontinuities: one between the sediment layer and upper crust at about a 2 km depth, 

the Conrad discontinuity at about a 12 km depth, and the Moho at about a 43 km depth. 

 

Table 2.1 – Earthquake data used to estimate crustal velocity structure. Waveforms were obtained from 

the IRIS Data Management Center earthquake datacenter. 

Date Origin time (UTC) Lat (ºS) Long (ºW) Depth (km) Mag (MW) BAz (º) 

28 Aug 1999 12:40:06.1 1.29 77.55 196.4 6.3 303.579 

21 Aug 2000 09:16:25.4 53.02 45.97 10.0 6.1 171.955 

28 Sep 2000 23:23:43.3 0.22 80.58 22.9 6.4 305.435 

4 Oct 2000 14:37:44.1 11.12 62.56 110.3 6.1 343.178 

8 Nov 2000 06:59:58.8 7.04 77.83 17.0 6.5 317.364 

31 Jul 2002 00:16:44.6 7.93 82.79 10.0 6.5 302.430 
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Figure 2.8 – RF traces calculated with the time-domain deconvolution for 6 teleseismic 

events recorded by POPB station (dashed lines), and the stacked trace (solid line) used 

as observation samples in the joint-inversion process (vector c in equation 2.4) 

 

 

Figure 2.9 – Global model IASP91 (dashed) used as initial values in the joint inversion 

process and the estimated model (solid) showing three main discontinuities: sediment-

upper crust, Conrad and Moho, with depths different from the global model. 
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Assuming the estimated velocity model is correct, the prediction of each 

observation sample was applied (maximum/minimum) with a confidence level of 0.99 

and critical points over the objective function surface obtained. A total of 626 velocity 

models were identified that maintained optimal conditions of the estimated model 

requiring approximately 2x10
5
 forward model calculations, less than half of typical 

global search procedures (Bodin et al, 2012). The predicted profiles and their quantiles 

are summarized in figure 2.10. At the 95th percentile, the greatest range of prediction 

uncertainty (0.23 km/s) was associated with the upper mantle (below the Moho) with 

less uncertainty in velocity estimates for the crust (0.18 km/s), between 6 and 8 km/s. 

The smallest magnitude in estimated uncertainty (0.094 km/s) was observed at depths 

between 18 and 20 km. The modeled estimates for this layer are similar to those 

provided by Juliá et al. (2008), who used velocity variations between joint inverse 

models for each receiver function group. 
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Figure 2.10 – (a) Predicted models for each observation sample (black) and the 

inversion estimated model (red). (b) Estimated model (solid black line) and the profiles 

corresponding to the range of percentiles: 90th (dashed blue), 95th (dashed green) and 

99th (dashed red) calculated from predicted values. 

 

2.5. – Conclusions 

 

This study successfully demonstrates a novel method for quantifying nonlinear 

uncertainty in the joint inversion of receiver function and surface-wave dispersion data. 
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By estimating the maximum and minimum prediction values for all observation samples 

of a previously estimated velocity model, the statistical information of critical points 

mapped across an objective function surface can be used to determine conditional 

quantiles of the inverted parameters. The proposed method is tested using synthetic data 

and then successfully applied to field data recorded by the POPB seismic station 

installed in the Paraná basin, southeast Brazil. The similarity of velocity uncertainty 

estimated in this study to previous studies supports its application in future studies. 

 

2.6. – Data and Resources 

 

All data used in this paper came from published sources. POPB station 

seismograms used in this study were collected as part of the Brazilian Lithospheric 

Seismic Project (BLSP) (James et al., 1993). Data can be obtained from the IRIS Data 

Management Center at www.iris.edu (last accessed January 2013). Surface waves 

dispersion curves are courtesy of Feng Mei (Feng et al., 2004). Computer software 

package for forward model calculation is encapsulated in Computer Programs in 

Seismology provided by C. Ammon and R. Herrmann upon request at 

http://www.eas.slu.edu/eqc/eqccps.html (last accessed January 2013). Inversion and 

prediction algorithms are encapsulated in Parameter Estimation (PEST) package 

provided by John Doherty at www.pesthomepage.org (last accessed June 2012). Some 

figures were created using Matrix Laboratory (MATLAB, www.mathworks.com, last 

accessed June 2011). 

 

 

 

http://www.iris.edu/
http://www.eas.slu.edu/eqc/eqccps.html
http://www.pesthomepage.org/
http://www.mathworks.com/
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Abstract 

 

A joint inverse scheme is presented to integrate earthquake seismic (receiver function 

and Rayleigh wave dispersion) and magnetotelluric (electric and magnetic field) data 

for improved crustal imaging. The proposed methodology uses a Gauss-Marquardt-

Levenberg algorithm to minimize a multi-component objective function (differences 

between estimated and observed receiver function trace, surface wave dispersion curves 

and magnetotelluric resistivity and phase measurements) with a cross-gradient 

constraint (differences among adjacent resistivity and seismic velocity parameters). The 

methodology is evaluated using synthetic data from three 1D seismic models co-located 

with a 2D magnetotelluric model grid with crustal features including a sedimentary 

basin, the Conrad discontinuity (boundary between upper and lower crust), and the 



40 

 

Mohorovicic (boundary between the Earth's crust and mantle) discontinuity. Results of 

the joint inversion show improved resolution in the estimated resistivity structure 

compared to the traditional inversion of resistivity parameters using only 

magnetotelluric data. Improvements include resolving lateral variations and depth of 

discontinuities, and a high-resistivity zone underlying a high-conductivity zone (500-

fold contrast). For the seismic 1D models, the absolute values of layer shear-wave 

velocity are closer (+/-3%) to the synthetic model crustal structures demonstrating 

benefits of the joint inversion. 

 

3.1. – Introduction 

 

In crustal imaging, the inversion of multiple geophysical data types has become 

popular. Combining several types of data collected over the same region can potentially 

reduce ambiguity and enhance inversion results. For example, Meju et al. (2003) 

analyzed independent electromagnetic and seismic refraction inversions for two-

dimensional (2D) models. By inverting each data set individually, the recovered 

physical property models can be inconsistent with prior knowledge regarding 

relationships. Cooperative strategies can be employed to ensure consistency between the 

different models (Bedrosian et al., 2007), but the models obtained are likely to be biased 

towards the result of the first inversion or the survey with greater sensitivity. Another 

approach is to fit data sets simultaneously in a joint inversion. 

Several investigators perform joint inversions of data from different surveys 

sensitive to the same physical property. For example, the joint inversion of Rayleigh and 

Love (surface) wave dispersion data (Ritzwoller and Levshin, 1998; Pasyanos et al., 

2001; Mei et al., 2004), and receiver function (RF) and Rayleigh wave dispersion data 
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has been successful in imaging crustal discontinuities based on seismic velocity (An and 

Assumpção, 2004; Bodin et al., 2012). Recently, Moreira et al. (2013) demonstrated the 

benefits of using the joint inverse approach with RF and surface wave dispersion data to 

reduce uncertainty when imaging crustal discontinuities. Other researchers jointly 

inverted data sets responsive to different physical properties between which there is an 

analytic relationship (Zevallos et al., 2009). An empirical equation relating parameters 

are not always available, especially for crustal soundings with high contrast 

heterogeneities (e.g. crust-mantle discontinuities).  

Fewer work has focused on the joint inversion of disparate data sets where there 

is no analytic relationship available between the properties. In this case, some 

investigators found that a numerical constraint geometrically relating the structural 

distribution of different parameters can be useful. For example, Gallardo and Meju 

(2007) applied a joint inversion of seismic refraction and magnetotelluric (MT) data in a 

linearized scheme requiring the co-location of soundings. In other studies, Moorkamp et 

al. (2007) and Zevallos et al. (2009) jointly inverted RF and MT data for 1D models 

using methods based on genetic algorithm (GA). More recently, Moorkamp et al. (2010) 

added surface wave dispersion to the RF and MT 1D joint inversion.  

In this study, our aim is to evaluate the usefulness of inverting disparate and 

multidimensional geophysical data for improved crustal imaging. The objective is to 

quantify improvements associated with two-dimensional (2D) geophysical imaging of 

the Moho and crustal structures based on simultaneous integration of receiver function, 

fundamental mode Rayleigh dispersion, and MT data. This approach extends the joint 

inverse work of Moreira et al. (2013) who sought to reduce model nonuniqueness and 

uncertainty by integrating 1D RF and surface wave dispersion data, and Gallardo et al. 

(2004, 2007) who used the cross-gradient structural constraint to relate two physical 
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parameters in a single multi-component objective function. Performance of the 

proposed methodology is validated using data from a synthetic model. 

 

3.2. – Methodology 

 

3.2.1. – Forward model 

 

3.2.1.1. – Receiver function 

 

The RF reflects the subsurface response to body waves crossing geologic 

structures near to a seismic station. The equation for a RF is defined by the time-domain 

trace corresponding to the deconvolution: 

 

RF() = R() / Z()         (1) 

 

where R() and Z() are the radial and vertical components respectively of a 

teleseismic waveform expressed in the frequency domain. 

 

This method is convenient for crustal imaging because it mathematically 

removes source and receiver instrument effects from the seismogram (Ammon, 1991). 

The processing scheme is done through deconvolution of the radial and transverse 

components using the vertical component. This process results in a time series 

comprising linear combinations of peaks representing refraction and reflections of body 

waves through a velocity discontinuity. Part of the energy crossing the discontinuity is 

converted from compressional (P) to shear (S) waves and vice-versa (Aki and Richards, 
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1980). As they have different propagation velocities, these phases reach the station in 

different times and are represented in the RF trace as time shifted peaks, making 

possible the subsurface imaging of seismic velocity. 

A primary characteristic of the RF trace is its sensitivity to seismic velocity 

contrasts. Because different combinations of layer thicknesses and velocities can result 

in similar RF traces, it is necessary to create radial (or transverse) and vertical 

seismograms components using the algorithm of Randall, (1989). This algorithm is 

based on the reflection matrix of Kennett (1983) which provide consistent results for 

horizontal homogeneous layers. For the RF trace calculation, there are several available 

procedures, such as frequency-domain deconvolution (Langston, 1979), iterative time-

domain deconvolution (Ligorria and Ammon, 1999), and autoregressive time-domain 

deconvolution (Wu et al. 2007). For seismograms associated with large earthquakes and 

high signal-to-noise ratios, all of these techniques have similar results. However, the 

time-domain methods are not affected by artificial effects introduced by equalization 

(Clayton and Wiggins, 1976). For this study, the method of Ligorria and Ammon, 

(1999) is used because of its inherent stability and minimal processing time. 

 

3.2.1.2. – Surface  wave dispersion 

 

Relative to other forms of seismic energy, surface waves (e.g. Rayleigh and 

Love waves) have a low attenuation rate and broad frequency spectrum. These 

characteristics make surface-wave dispersion curves attractive for subsurface imaging 

over a range of shallow (Chourak et al., 2003; Jung et al., 2008) to deep structures (Van 

der Lee and Nolet, 1997; Mei et al., 2004). Given that the horizontal seismogram 

components are usually more affected by noise, dispersion curve processing for Love 
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waves is more difficult to achieve high fidelity resolution, especially for long period 

waveforms. For this reason, only the fundamental mode of Rayleigh wave group 

velocity dispersion curves are used in the joint inversion presented here. The equation 

for Rayleigh wave dispersion (Aki and Richards, 1980) is given by 

 

U = d/dk.          (2a) 

 

In terms of the phase velocity c, 

 

U = c + k dc/dk,         (2b) 

 

where all variables are a function of the angular frequency , U is the group velocity, 

and k is the wave number. 

The synthetic seismograms used to calculate Rayleigh wave dispersion curves 

are generated by algorithms described in Herrmann, (2002). Using the vertical 

component, the dispersion curves are calculated using the multi-filter technique 

(Dziewonski et al., 1969, Bhattacharya, 1983) which measures the signal amplitude 

variation as a function of velocity and frequency. Whereas the surface wave dispersion 

is primarily sensitive to the mean absolute value of seismic velocities, the receiver 

function is mainly sensitive to velocity contrasts. For this reason, the joint integration of 

both data sets can potentially reduce the non-uniqueness when modeling crustal features 

(Moreira et al., 2013). 
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3.2.1.3. – Magnetotelluric 

 

MT sounding is a traditional geophysical method used to infer crust and mantle 

conductivities (Bologna et al. 2005, Gürer et al. 2004). The method requires 

simultaneous measurements of the natural magnetic fields and orthogonal electric fields. 

From these measurements, the electrical impedance can be found (Jones, 1992) by: 
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       (3) 

 

where E and H are the respective natural electric and magnetic fields recorded in 

orthogonal directions x and y, and Zij is the complex impedance tensor; and all variables 

are in the frequency domain. The apparent resistivity and phase can be calculated by: 

 

a,xy() = (1/)|Zxy()|
2
        (4) 

 

and 

 

xy() = tan
-1

[Im Zxy()/Re Zxy()]      (5) 

 

where μ is the magnetic permeability, and  is the angular frequency (previously 

defined). Similarly these equations can be applied to ρa,yx(ω) and yx(ω). 

The synthetic data for transverse electric and transverse magnetic resistivity and 

phase are obtained using the finite-element solution for 2D models (Wannamaker et al. 
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1987), which presents higher stability for lower frequencies. Because the algorithm 

provides the resistivity and phase values, additional processing involving time-

frequency transformation using cross-spectra are not necessary. 

 

3.2.2. – Joint inversion 

 

The joint inversion of disparate data sets is done by minimizing (in an iterative 

way) the least-squared differences between observed samples and the synthetic data in a 

multi-objective function. The algorithm used to update parameter values in the objective 

function is based on a linearized Gauss-Marquardt-Levenberg scheme, as described in 

Doherty (2005). In this algorithm the objective function is defined by: 

 

Φ = (c – c0 – J (b – b0))
t
 Q (c – c0 – J (b – b0))    (6) 

 

where the bold letters represent matrices (or vectors). In this equation, c represents the 

observed data vector, b is the parameters vector, J is the Jacobian matrix containing 

derivatives of each sample of vector c related to each parameter of vector b (which is 

responsible for the linearization of the proposed scheme), and Q is a diagonal matrix 

with the square weights of each observation. From this equation, it is possible to define 

an update parameter vector (b-b0) as: 

 

u = (J
t 
Q J + α I)

-1 
J

t 
Q r        (7) 

 

where r is the vector containing the observations residuals (c-c0), I is the identity matrix 

and  is the Marquardt parameter (introduced to stabilize the update parameter process). 
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The vector u therefore forms the basis for non-linear parameter estimation through 

weighted least squares approach. For crustal and upper mantle lithologies shear wave 

velocities can vary from 3 to 5.5 km/s (Christensen and Mooney, 1995) while electric 

resitivity varies from 10
-2

 to 10
6
 m (Korja, 1997), therefore the Jacobian matrix 

elements can have different magnitudes and mislead the update vector calculation. For 

this reason, a scaling matrix is introduced in the previous equation: 

 

S
-1

 u =((J S)
t
 Q J S + α S

t
 S)

-1
 (J S)

t
 Q r     (8) 

 

where Sii = (J
t
QJ)ii

-1/2
, keeping the equation (6) mathematically equivalent to equation 

(5). 

 

The algorithm is versatile and can be applied to any geophysical data and parameters. In 

this study, the previously described seismic and MT methods are used in the forward 

model calculations, and the Gauss-Marquardt-Levenberg method is used to estimate the 

model parameters. 

 

3.2.3. – Cross-gradient constraint 

 

Because this inversion uses parameters with different physical properties, the 

inclusion of different data sets to the same objective function may not increase model 

resolution, improve precision of the estimated models, or enhance convergence and 

stability. For this reason, the cross-gradient constraint (Gallardo and Meju, 2004) is 

added to the joint inverse procedure. This constraint implies that there is structural 

similarity between the resistivity and velocity models, resulting in the co-location of 



48 

 

contrasts among the parameter sets. The cross-gradient constraint is applied as a new 

observation group following the cross-product: 

 

g(x,y,z) = r(x,y,z) x s(x,y,z) = 0,      (9) 

 

where r and s represents the respective resistivity and velocity parameters, and x, y and z 

are the three dimension coordinates. This equation does not represent discontinuities or 

singularities; therefore, it can be readily incorporated into the linearized inversion 

scheme. In considering a 2D model, the discrete cell grid (figure 1) can be rewritten as: 

 

g ≈ (4/∆x∆z) [rij(s(i+1)j – si(j+1)) + ri(j+1)(sij – s(i+1)j) + r(i+1)j(si(j+1) – sij)] = 0,  (9.1) 

 

or 

 

g ≈ (4/∆x∆z) [sij(ri(j+1) – r(i+1)j) + si(j+1)(r(i+1)j – rij) + s(i+1)j(rij – ri(j+1))] = 0 , (9.2) 

 

where the subscript letter i represents the cell row (z direction) and j represents the cell 

column (x direction). If both models have co-located anomalies then both vectors in the 

right-hand-side of equation (7) will be of the same (or opposite) sign (regardless of the 

vectors length) and the vector g will be zero. One possible solution in both equations 

(9.1) and (9.2) is that the difference between two adjacent cells of the same model 

should be zero, meaning that the cross-gradient constraint reflects a smooth 

(homogeneous) constraint. 
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Figure 3.1. Discrete representation of cross-gradient constraint for a 2D grid. Adapted 

from Gallardo and Meju, 2004. 

 

3.3. – Synthetic test 

 

The proposed methodology was tested with synthetic data obtained using the 

physical model represented in figure 3.2. The main geological features being modeled 

as geophysical soundings include a sedimentary basin, an upper and lower crust, and an 

upper mantle. This geological model characterizes crustal features such as the Conrad 

(between upper and lower crust) and Moho (between lower crust and upper mantle) 

discontinuities. The numerical model reflects a 2D grid with 3 homogeneous layers over 

half-space with sharp contrasts between each layer co-located in both resistivity and 

velocity parameter groups. The profile reflects typical MT soundings (Korja, 1997) and 

deep enough to represent the Moho discontinuity and the upper mantle. This profile was 

divided into 3 different regions each of which incorporated one seismic station, showing 

a lateral variation in layers depth and a low velocity zone (LVZ) with low resistivity 

values on the left portion. 
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Figure 3.2. Homogeneous synthetic model of resistivity and velocity parameters with 

lateral variation of layers depth and a low velocity-resistivity zone on the left portion. 

 

In figure 3.2 the black dots represent MT stations, and the inverted red triangles 

are seismic stations. The apparent resistivity and phase curves for transverse electric and 

transverse magnetic data were generated for each station using the algorithm of 

Wannamaker et al. (1987). Random noise characterized as a Gaussian distribution was 

added (3% for resistivities and 2.5° for phase, slightly higher than Agarwal et al. 1993 

and Pek and Santos, 2006) to each curve. The 1D model profiles underlying seismic 

stations were used to generate synthetic seismograms. The seismograms used in the RF 

calculation were contaminated by Gaussian random noise with 2% of the direct P wave 

amplitude and the seismograms for surface dispersion curves calculation were also 

contaminated by 2% Gaussian random noise. 

The P-to-S converted phase at the Moho discontinuity and multiples reflections 
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within the crust usually occur on the first 30 seconds of the seismogram and after the 

first P arrival. To ensure that all crustal features were well represented in each RF trace, 

synthetic seismograms were generated with a 60 second length. These seismograms 

were then deconvolved using the algorithm of Ligorria e Ammon (1999) with up to 500 

iterations. The synthetic seismograms used for dispersion curve calculations were 

generated using software provided by Herrmann (2002). In turn, the dispersion curves 

were then calculated using the multi-filter technique (Dziewonski et al. 1969, 

Bhattacharya, 1983). 

Initially separate inversions were carried out for each of the parameter groups 

and then the joint inversion of all data set with the cross-gradient constraint. Due to the 

high number of parameters and consequently high degree of non-linearity, the linearized 

method for joint inversion becomes more sensitive to the initial parameter values often 

times converging to local minima and non-realistic models. To avoid this issue, the 

estimated parameters for separate inversions were used as initial values for the same 

parameters in the joint inversion. This process promoted convergence to solutions based 

on global minima. 

 

3.3.1. – Separate inversions 

 

The synthetic model has three seismic stations resulting in three 1D subsurface 

profiles. Given that receiver function and surface wave dispersion map seismic velocity, 

both data sets were jointly inverted to estimate a common set of seismic velocity 

parameters. For this inversion, a smooth constraint was added to adjacent parameters in 

the same profile (vertical smoothness) and parameters at same depth in adjacent profiles 

(horizontal smoothness). The results for each profile are shown in figure 3.3. Inspection 
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of this figure provides a visual comparison of the estimated and known parameters. 

Besides differences among original and estimated values for the three profiles, the 

velocity models correctly represent the main crustal discontinuities, including the low 

velocity zone (LVZ) on the N01 profile, where the higher differences happening in the 

layers of upper mantle, below Moho. The receiver function traces obtained from the 

original and estimated models are presented in figure 3.4. The main peaks representing 

the seismic waves refraction through the main crustal discontinuities are present 

(Conrad P-to-S conversion around 3 seconds and Moho P-to-S conversion around 5 

seconds), however with relative difference among RF samples about 30% for the Moho 

P-to-S conversion peak of station N01, about 5% for station C00 and about 20% for 

station S01. The dispersion curves for both models depict excellent correspondence 

between the original and estimated values with absolute of residuals less than 10
-2

 km/s 

(0.3%) for all SWD samples of the three stations (figure 3.5). 
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Figure 3.3. Calibration results for profiles N01 (top), C00 (center) and S01 (bottom), 

comparing the initial (dash-point), original (dashed) and estimated (solid) parameters 

values. 
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Figure 3.4. Receiver function traces from original (dashed) and estimated (solid) 

models for the profiles N01 (top), C00 (center) and S01 (bottom) 
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Figure 3.5. Dispersion curves from synthetic (circle) and estimated (red solid line) 

models for the profiles N01 (top), C00 (center) and S01 (bottom) 
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The 2D resistivity model is resolved using 15 MT stations equally separated 

along a 150 km length profile. As with the seismic velocity inversion, a smooth 

constraint was added between adjacent cells in both horizontal and vertical directions. 

The results presented in figure 3.6 reveal poor resolution when using the traditional MT 

inversion to image lateral variations as well as a loss of vertical resolution with depth. 

The apparent resistivity and phase for three stations (MT stations co-located with 

seismic stations) are shown in figure 3.7. The differences between each curve are 

minimal with absolute residuals less than 10
-1

 m (0.2%) for all MT apparent resistivity 

samples and less than 2º (4.5%) for all phase samples. 

 

 

Figure 3.6. Estimated resistivity parameters for MT inversion. The vertical resolution is 

limited and the true model lateral variation is not imaged. 
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Figure 3.7. Apparent resistivity and phase for three MT stations with synthetic (dots) 

and estimated (solid line) samples. 

 

3.3.2. – Joint inversion 

 

Using the proposed scheme, the resistivity and velocity parameters were jointly 

inverted. The seismic station N01 is co-located with MT station N05, the same way 

seismic stations C00 and S01 are co-located with MT stations C00 and S05 respectively. 

To make possible the application of the cross-gradient equation (9), the seismic velocity 

parameters were duplicated from each 1D profile in the proximities of respective 

seismic stations, creating a quasi-2D profile grid. Because the cross-gradient equation 

includes a smooth constraint, this additional information was not added to the inversion. 

The estimated results for the three seismic 1D profiles and 2D resistivity profile are 

shown in figures 3.8 and 3.9, respectively. 
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Figure 3.8. Joint inversion results for N01 (top), C00 (center) and S01 (bottom) seismic 

profiles with synthetic (dashed) and estimated (solid) parameters values. 
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Figure 3.9. Joint inversion results for resistivity parameters. 

 

In comparing the 1D seismic profile results for separate and joint inversions 

reveals visual improvement in the absolute values of parameters close to the main 

discontinuities, especially the layers below Moho, where the difference among 

estimated and synthetic parameters reduced from 5% to 1.1% for station N01, from 

4.6% to 4.2% for station C00 and from 4.6% to 0.7% for station S01. For the resistivity 

model, the improvement is more noticeable comparing the results from separate and 

joint inversions with the synthetic model where the average difference between the 

estimated and synthetic parameters reduced from 0.678 m to 0.436 m (reduction of 

35%) for the entire profile and from 1.829 m to 0.985 m (reduction of 46%) 

considering only the left portion underlying the low resistivity zone. These 

improvements make it possible to see the discontinuities between the sediment basin 

and upper crust, and between the lower crust and upper mantle (Moho). This is 

especially obvious on the left portion of the figure, where the higher resistivity layer 

below the low velocity-resistivity zone is now properly imaged. 
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3.4. – Conclusions 

 

The joint inversion of receiver function, surface wave dispersion and 

magnetotelluric data provides improved imaging capability over the traditional 

inversion of independent data sets. Integrating the three data sets using the proposed 

multi-component objective function and cross-gradient constraint provides simultaneous 

reconstructions with improved 2D resistivity and 1D seismic velocity models for 

identifying lateral variations and vertical resolution of crustal features. The feasibility of 

MT soundings co-located to broadband seismic stations or installation of seismic 

stations in previously sounded MT profiles makes the proposed methodology useful for 

crustal tectonic and geologic studies or subsurface mineral deposit assessment. The 

comparative improvements in estimated models support the use of joint-geophysical 

application in future crustal studies. 

 

3.5. – Computational resources 

 

Computer software package for seismic forward model is encapsulated in 

Computer Programs in Seismology provided by C. Ammon and R. Herrmann upon 

request at http://www.eas.slu.edu/eqc/eqccps.html (last accessed January 2013). 

Magnetotelluric forward model calculation is encapsulated in Occam2DMT software 

provided by the Marine EM Laboratory of the Scripps Institution of Oceanography 

(http://marineemlab.ucsd.edu/Projects/Occam/2DMT/index.html, last accessed January 

2013). Inversion algorithm is encapsulated in Parameter Estimation (PEST) package 

provided by John Doherty at www.pesthomepage.org (last accessed June 2012). Some 

figures were created using Matrix Laboratory (MATLAB, www.mathworks.com, last 

http://www.eas.slu.edu/eqc/eqccps.html
http://marineemlab.ucsd.edu/Projects/Occam/2DMT/index.html
http://www.pesthomepage.org/
http://www.mathworks.com/
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accessed June 2011). 
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4. – Conclusões 

 

A análise de incertezas de inversão conjunta de dados de função do receptor e 

dispersão de ondas de superfície representa um importante papel na modelagem crustal 

de velocidade de ondas sísmicas, pois define uma faixa de valores para os parâmetros de 

velocidade de ondas sísmicas para um intervalo de confiança pré-determinado. Os 

métodos utilizados até o presente possuem grandes simplificações ou são de natureza 

qualitativa, sem formalidades matemáticas. Assim, a metodologia proposta para 

determinação das incertezas baseadas na predição de valores observados representa uma 

importante contribuição para essa área da geofísica. Os testes realizados, bem como sua 

utilização em dados coletados na bacia do Paraná, mostraram a aplicação do método e 

seus resultados, consistindo em um conjunto de modelos 1D, cada um deles 

representando um ponto crítico na região de mínimo da função objetivo, formando um 

conjunto de valores em torno do valor estimado no processo de inversão, gerando 

informação tanto da distribuição estatística dos modelos dentro do intervalo de 

confiança bem como os limites desse intervalo e seus respectivos percentis. 

A incorporação de múltiplos dados geofísicos dentro de um único processo de 

inversão, configurando uma inversão conjunta, tem como resultado esperado uma 

redução da não-unicidade e maior robustez do processo com relação a ruídos nos dados 

observados. Essa incorporação, entretanto, requer informações adicionais para 

estabilização do algoritmo numérico, tais como relações matemáticas entre os 

parâmetros invertidos e vínculos e informação a priori. A inversão conjunta de dados de 

função do receptor, dispersão de ondas superficiais e magnetotelúricos tem como 

proposta aumentar a resolução dos resultados e minimizar os efeitos das limitações que 

cada um dos métodos apresenta separadamente, como por exemplo a baixa resolução 
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lateral da inversão utilizando dados magnetotelúricos. A metodologia proposta de 

inversão conjunta desses dois grupos de parâmetros geofísicos, com o vínculo estrutural 

do gradiente cruzado, se mostrou eficiente na resolução das principais feições 

geológicas simuladas no modelo sintético, aproximando o modelo estimado bem 

próximo do modelo real. Além disso o aprimoramento da inversão conjunta em 

comparação com a inversão de cada grupo de dados separadamente é notório e evidente, 

validando o método proposto. 

A partir dos resultados obtidos e pela relevância desses resultados, a presente 

tese é considerada por seus autores como importante contribuição científica para a 

comunidade geofísica. 


