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Abstract

The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma
hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall), has set the grounds for a
global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae
and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for
citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by
lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed
that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a va-
riety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS). Our data
showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess
the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M.
hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for en-
zymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The
identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of
these organisms.
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Introduction

Mollicutes (Latin “mollis” = soft, “cutis” = skin) are a

group of bacteria devoid of a rigid cell wall. They are the

smallest bacteria known (0.2 to 0.5 μm) and reportedly hold

the smallest non-viral genomes known. The biology and

pathogenicity of Mollicutes/Mycoplasma spp. have been

extensively reviewed (Razin et al., 1998; Razin, 2005).

Mollicutes are very fastidious in their nutritional require-

ments for in vitro growth and have limited biosynthetic ca-

pacity, a consequence of their concise genomes.

Cholesterol is required for growth by species of

Mycoplasma, Ureaplasma, Entomoplasma, Spiroplasma

and Anaeroplasma. There is an apparent correlation be-

tween Mycoplasma growth rate and genome size: under op-

timal conditions, Mycoplasma pneumoniae M129 (genome

size 816,394 bp) grows twice as fast as Mycoplasma

genitalium G-37 (genome size 580,074 bp) (Peterson and

Fraser, 2001).

Ribosomal RNA (16S) phylogeny studies revealed

that these bacteria evolved from cell-walled gram-positive

Firmicutes of low G+C content (23 to 40%), probably of

the genus Streptococcus [by shedding their genes to the

probable minimum genome size in the range of 530 kbp

(Razin et al., 1998)], which appears to date to be the mini-

mal gene assembly required for independent self-

replicating life, although not all of the genes included are

deemed essential (Peterson and Fraser, 2001). Thus, the

current hypothesis is that Mollicutes reductively evolved

towards that minimal genome set, heavily dependent on the

supply of nutrients from the host or a rich milieu. In this

process, they have lost genes involved in biosynthesis of

lipids, amino acids, cofactors and gram-positive-type cell

wall components, as well as several genes involved in tran-

scription regulation, cell division and heat shock response

(Razin et al., 1998). Mycoplasma species are often defi-

cient in intermediary energy metabolism, depending

mostly on glycolysis as an ATP-generating system (Razin
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et al., 1998). This deficiency in metabolism, cellular pro-

cesses and energy production imposes a lifestyle strictly

dependent on the natural host. Therefore, Mollicutes are

compulsory parasites/pathogens of humans (genera

Mycoplasma and Ureaplasma), other vertebrates

(Mycoplasma, Ureaplasma, Acholeplasma, Anaeroplasma

and Asteroleplasma), insects (Entomoplasma,

Mesoplasma, Spiroplasma and Phytoplasma) and plants

(Entomoplasma, Mesoplasma, Spiroplasma, Acholeplasma

and Phytoplasma) (Razin et al., 1998; Razin, 2005). The

pathogenicity of poultry Mycoplasma has been recently re-

viewed (Bradbury, 2005).

The complete genome sequences of nine

Mycoplasma species (including three different strains of M.

hyopneumoniae) have been determined: M. gallisepticum

R (genome size 996,422 bp), M. genitalium G-37 (580,074

bp), M. hyopneumoniae 232 (892,758 bp) 7448 (920,079

bp) and J (897,405 bp), M. mobile 163K (777,079 bp), M.

mycoides subsp. mycoides SC strain PG1 (1,211,703 bp),

M. penetrans HF-2 (1,358,633 bp), M. pneumoniae M129

(816,394 bp), M. pulmonis UAB CTIP (963,879 bp), and

M. synoviae 53 (799,476 bp) (Entrez Genome). The com-

plete genomes of one Ureaplasma species, Ureaplasma

parvum (U. urealyticum) serovar 3 strain ATCC 700970

(751,719 bp) (Glass et al., 2000) and of Mesoplasma florum

strain L1, (793,224 bp) are also known (Entrez Genome

and references therein), as is that of the obligatory intra-

cellular plant pathogen Phytoplasma (Candidatus

Phytoplasma asteris, OY strain), with a genome size of

about 860 kbp (Oshima et al., 2004). No genome sequenc-

ing of species from the genera Entomoplasma,

Spiroplasma, Acholeplasma, Anaeroplasma, and

Asteroplasma was reported so far.

The concept of minimal genome has been extensively

debated in both philosophical (Cho et al., 1999) and theo-

retical terms and tested experimentally (Peterson and Fra-

ser, 2001); it was originally proposed by Morowitz (1984),

who viewed Mycoplasma spp. as minimal organisms. In a

comparative analysis of the genomes of M. genitalium and

Haemophylus influenzae, Mushegian and Koonin (1996)

concluded that 256 orthologous and non-orthologous genes

sufficed to sustain the existence of a modern-type cell. The

M. genitalium gene set of 480 is much larger then that, im-

plying that it contains some non-essential genes, as proba-

bly other Mollicutes do too. Although Mollicutes carry the

smallest genomes, they differ in gene complement size,

which are probably a reflection of their efficient metabolic

pathways and also a function of their host essential nutrient

supply. As extensively discussed by Peterson and Fraser,

2001, the experimentally defined minimal genome is lin-

eage-specific and, therefore, may not apply to different

phylogenetic lineages (Peterson and Fraser, 2001; Zimmer,

2003; Razin et al., 1998).

In this paper we make a comparative analysis of the

metabolic landscape of the genomes of seven Mycoplasma

and one Ureaplasma species, highlighting mainly the

extant differences among the differential sequences that en-

code enzymes that participate in carbohydrate, amino acid

and nucleotide metabolism and host-pathogen interaction.

Methods

Mycoplasma sequences were obtained from the Bra-

zilian Genome and Southern Genome Investigation Pro-

grams (both from LNCC) and from the National Center for

Biotechnology Information (NCBI). Missing genes were

mined with the TblastN program (Altschul et al., 1997) us-

ing known Mycoplasma proteins as query against M.

synoviae and M. hyopneumoniae (strains J and 7448) ge-

nome databases. The Molligene database was also used to

aid in comparative analysis. Metabolic pathways were de-

fined using KEGG (Kyoto Encyclopedia of Genes and

Genomes). In order to compare Mycoplasma enzyme cod-

ing sequences, we first found the missing EC numbers in M.

synoviae and M. hyopneumoniae (strains J and 7448) (Ta-

ble 1). An enzyme was considered absent only after their

genome databases blast analysis. We also performed the

same search in other Mycoplasma and Ureaplasma gene

databases (Table 2).

Results

General description of Mycoplasma synoviae and
Mycoplasma hyopneumoniae (strains J and 7448)
metabolism

The genome project developed by the consortium of

BRGene and Genesul reported the results of analyses of

three complete Mycoplasma genomes - a pathogenic (7448)

and a nonpathogenic (J) strain of the swine Mycoplasma

hyopneumoniae and a strain of the avian pathogen

Mycoplasma synoviae (Vasconcelos et al., 2005). By look-

ing into aspects of Mycoplasma evolution, the authors

found strain-specific regions, genome rearrangements and

adhesion sequences in the M. hyopneumoniae strains,

which are probably related to pathogenicity. Genome com-

parisons of those microorganisms revealed that its reduc-

tion was the consequence of a loss of metabolic pathways.

As concluded from genome data analysis, M.

hyopneumoniae does not synthesize starch, glycogen, su-

crose, pectin, sugar nucleotides such as UDP-glucose,

ADP-glucose and others. These data also indicated that it

can take up a variety of carbohydrates such as mono- and

disaccharides (D-glucose, D-fructose, mannose, maltose,

sucrose, inositol, sorbose, sorbitol, D-mannitol, etc.) via

PEP-PTS (phosphoenolpyruvate-dependent phosphotrans-

ferase system). Only D-glucose and D-fructose are trans-

formed into pyruvate by the glycolytic pathway. Pyruvate

can be converted to lactate or acetyl-CoA. In the M.

hyopneumoniae genome, we also found genes coding for

enzymes that are able to convert both sugars to D-fructose-

6P and D-fructose-1,6-bisphosphate, which enter the
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glycolytic pathway and can be used to produce dihydro-

xyacetone-P and glyceraldehyde-3P. M. hyopneumoniae

also possesses genes coding for enzymes that phospho-

rylate lactose and galactitol to lactose-6P and galactitol-1P;

convert glycerol to glyceraldehyde and glycerol-3P, and

PEP into pyruvate and then to acetyl-CoA or lactate.

Similarly, M. synoviae data suggest that it does not

synthesize starch, glycogen, sucrose, pectin, or sugar nu-

cleotides such as UDP-glucose, ADP-glucose and others. It

is probably able to take up extracellular substrates such as

D-fructose, D-mannose, L-sorbose, D-sorbitol, D-mannitol

and convert them to glyceraldehyde-3P, except mannose

and mannitol, since these two substrates do not seem to be

converted to fructose-6P. M. synoviae is probably unable to

grow on either of these two sugars as sole carbon source.

M. hyopneumoniae has glucokinase but no hexoki-

nase, and M. synoviae lacks the coding genes for both kin-

ases. Both M. synoviae and M. hyopneumoniae could

convert glycerol-3P into glyceraldehyde-3P with glyce-

rone-P as an intermediate. Both organisms are unable to

produce glucose-1P for starch synthesis, but can produce

L-lactate and acetyl-CoA from pyruvate. M. synoviae can

interconvert acetaldehyde and acetate by acetaldehyde

dehydrogenase, but M. hyopneumoniae cannot. M.

synoviae and M. hyopneumoniae are able to produce CoA

from dephospho-CoA, but are unable to synthesize panto-

thenate and coenzyme A from pyruvate.

Both Mycoplasma spp. lack sequences encoding en-

zymes that participate in the citrate and glyoxylate cycles,

gluconeogenesis (absence of fructose-1,6-bisphophatase),

and the oxidative branch of the pentose phosphate pathway.

They also lack all enzyme genes of the oxidative pathway,

namely glucose-6P-dehydrogenase, 6P-gluconate-dehy-

drogenase and 6-phosphogluconate-lactonase. All genes

coding for enzymes of the Entner-Doudoroff pathway seem

to be absent in both organisms, so neither can convert

D-glucose-6P into D-ribulose-5P.

Neither organism performs reactions of the glyoxyl-

ate cycle: the absence of isocitrate lyase and malate syn-

thase coding sequences suggests that they are unable to

synthesize glyoxylate and dicarboxylic acids such as oxalo-

acetate, succinate, citrate, isocitrate, cis-aconitate and

malate. Both are devoid of all 1C-metabolism enzymes ex-

cept for methylenetetrahydrofolate dehydrogenase in M.

synoviae. The absence of an active glyoxylate cycle pre-

cludes growth of both M. synoviae and M. hyopneumoniae

on 2-carbon substrates such as ethanol and acetate. In addi-

tion, both organisms are unable to perform gluconeo-

genesis, due to the absence of fructose-1,6-bisphosphatase

and glucose-6-phosphatase genes.

It is important to mention that both organisms present

genes involved in PRPP (phosphoribosyl-pyrophosphate)

production. They are also capable to synthesize D-ribose-

1P and 2-deoxy-D-ribose-1P for nucleoside generation. On
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Table 1 - Differential sequences encoding enzymes of Mycoplasma hyopneumoniae (strains J and 7448) and Mycoplasma synoviae.

Enzyme Name EC number Mhy (J)a Mhy (7448)b Msyc

Mannitol - 1- phosphate - 5 - dehydrogenase 1.1.1.17 X X -

Myoinositol 2 - dehydrogenase 1.1.1.18 X X -

Dihydrofolate dehydrogenase 1.5.1.3 - - X

Fol D, methylenehydrofolate dehydrogenase (NADPH) 1.5.1.5 - - X

Pmsr; peptide methionine sulfoxide reductase 1.8.4.5 X X -

Thy A, thymidine synthase 2.1.1.45 - - X

Deoxyguanosine kinase 2.7.1.113 - - X

Glucokinase 2.7.1.2 X X -

Glycerol kinase 2.7.1.30 X X -

Pantetheine-phosphate adenylyltransferase 2.7.7.3 - - X

Holo-[acyl - carrier -protein] synthase 2.7.8.7 - - X

5’-nucleotidase 3.1.3.5 X X -

Phosphoprotein phosphatase 3.1.3.16 - - X

Pullulanase 3.2.1.41 X X -

Oligo-1, 6-glucosidase 3.2.1.10 - - X

Probable polypeptide deformylase 3.5.1.88 - - X

N-acetylneuraminate lyase 4.1.3.3 - - X

Citrate (pro-3S)-lyase 4.1.3.6 - - X

Mannose-6-phosphate isomerase 5.3.1.8 X X -

Phosphoglucomutase 5.4.2.6 - - X

aMhy(J) - Mycoplasma hyopneumoniae J strain; bMhy(7448) - Mycoplasma hyopneumoniae 7448 strain; cMsy(J) - Mycoplasma synoviae.



the other hand, they are unable to synthesize purines and

pyrimidines de novo. They only present salvage pathways-

encoding sequences for nucleotide biosynthesis.

M. hyopneumoniae lacks the genes coding for fatty

acid biosynthesis and degradation pathway enzymes, as

well as those for sterol, bile acid, carotenoid and vitamins K

and E biosynthesis. Ketone bodies, C21 steroid hormone,

androgen and estrogen metabolic pathways are also absent.

However, M. synoviae and M. hyopneumoniae can produce

cardiolipin and ceramide, the only two membrane compo-

nents identified so far. Both M. synoviae and M.

hyopneumoniae can synthesize cardiolipin from acylgly-

cerol-3P through a pathway involving diacylglycerol-3-P

and CDP-diacylglycerol. Cardiolipin is found only in mem-

branes of bacteria and mitochondria, i.e., organisms/

organelles whose function is to generate an electrochemical

potential for substrate transport and ATP synthesis. Neither

organism studied synthesizes triacylglycerol, lecithin,

glycolipids or plasmalogens. Cardiolipin is apparently the

only membrane lipid of Mycoplasma spp., and both lack all

kinds of lipase genes.

Our data suggest that M. hyopneumoniae synthesizes

no amino acid at all. On the other hand, both the M.

synoviae and the M. hyopneumoniae genomes have all the

enzyme-coding sequences necessary for the synthesis of all

aminoacyl-tRNAs but glutaminyl-tRNA from glutamine.

The glutamine-tRNA ligase or glutaminyl-tRNA

synthetase is absent in both organisms, but they have the

amido ligase to convert glutamyl-tRNA into glutaminyl-

tRNA. The gene for the methionyl-tRNA formyltransferase

enzyme is present in M. synoviae, but absent in M.

hyopneumoniae. Apparently, in M. hyopneumoniae the ini-

tiator tRNA for protein synthesis is L-methionyl-tRNA.

Neither M. synoviae nor M. hyopneumoniae synthesizes ei-

ther alanine or aspartate from pyruvate or oxaloacetate.

They have alanyl-tRNA synthetase, aspartyl and

asparaginyl-tRNA synthetase-coding genes, but lack all

others for the corresponding pathways. Both organisms are

unable to synthesize glutamate or glutamine, but are able to

interconvert serine and glycine via glycine hydroxyme-

thyltransferase. Also, they present glycine, serine and

threonine-tRNA ligases and are able to perform the

oxi-reduction reactions of lipoylproteins. Both are unable

to synthesize glycine, serine or threonine, which must be

taken up from the environment, which probably accounts

for their known auxotrophic behavior regarding these ami-

no acids. Both seem to produce glycine and trimethyl-

ammonium butanol from N-6-hydroxy-trimethyl-lysine.

Only M. synoviae is capable to produce 4-tri-methyl-

ammonium butanoate from tri-methylammonium butanol.

Both organisms lack all other lysine degradation enzyme

genes. They also produce S-adenosyl methionine from
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Table 2 - Distribution of differential sequences encoding enzymes of other Mycoplasma and Ureaplasma species.

Enzyme EC# Mgaa Mgeb Mhy 232c Mmod Mmye Mpef Mpng Mpuh Uui

Mannitol - 1- phosphate - 5 - dehydrogenase 1.1.1.17 - - X - X - X X -

Myoinositol 2 - dehydrogenase 1.1.1.18 - - X - - - - - -

Dihydrofolate dehydrogenase 1.5.1.3 X X - X - X X X X

Fol D, methylenehydrofolate dehydrogenase (NADPH) 1.5.1.5 X X - X X X X X X

Pmsr; peptide methionine sulfoxide reductase 1.8.4.5 X X X X X - X X -

Thy A, thymidine synthase 2.1.1.45 X X - X - X X X -

Deoxyguanosine kinase 2.7.1.113 X X - - - - X X X

Glucokinase 2.7.1.2 - - X X X X - X -

Glycerol kinase 2.7.1.30 X X X X X X X X -

Panthetheine-phosphate adenylyltransferase 2.7.7.3 X - - X X X - X

Holo-[acyl - carrier -protein] synthase 2.7.8.7 X X - X X X X X X

5’-nucleotidase 3.1.3.5 - - X X - - - X -

Phosphoprotein phosphatase 3.1.3.16 X X - X X X X X X

Pullulanase 3.2.1.41 - - X X - - - X -

Oligo-1, 6-glucosidase 3.2.1.10 - - - X X - - X -

Probable polypeptide deformylase 3.5.1.88 X X - X X X X X X

N-acetylneuraminate lyase 4.1.3.3 - - - - X - - - -

Citrate (pro-3S)-lyase 4.1.3.6 X - - - - - - - -

Mannose-6-phosphate isomerase 5.3.1.8 X - X X X X - X -

Phosphoglucomutase 5.4.2.6 X - - X - - - X -

aMga - Mycoplasma galysepticum; bMge - Mycoplasma genitalium; cMhy (232)- Mycoplasma hyopneumoniae strain 232; dMmo - Mycoplasma mobile

163K; eMmy - Mycoplasma mycoides; fMpe - Mycoplasma penetrans HF2; gMpn - Mycoplasma pneumoniae M129; hMpu - Mycoplasma pulmonis UAB

CTIP; iUu - Ureaplasma urealyticus.



L-methionine. M. hyopneumoniae oxidizes L-methionine

to L-methionine sulfoxide, while M. synoviae presents

asparagine synthetase. Neither is able to synthesize or de-

grade phenylalanine.

Neither M. synoviae nor M. hyopneumoniae presents

any coding sequence for enzymes of the nitrogen cycle. The

nitrification, denitrification, nitrate and ammonium assimi-

lation pathways are absent. Both are unable to synthesize

nitrogenous compounds, including ammonium (even from

N-compounds) and amino acids. The only exception is the

potential ability of M. synoviae to synthesize asparagine

from aspartate and ammonia.

Genes encoding enzymes for the respiratory chain are

not found in M. synoviae or M. hyopneumoniae (strains J

and 7448). Sequences related to ATP synthases subunits

are not detected, except for ADP tetraphosphate phospho-

hydrolase. Both M. synoviae and M. hyopneumoniae lack

all the cytochrome complement and therefore cannot per-

form electron transport or oxidative phosphorylation. They

apparently produce ATP mainly through the glycolytic

pathway.

Both bacteria are unable to synthesize chitin, glyco-

saminoglycans, lipopolysaccharides, peptideoglycans, mu-

copolysaccharides or lipoglycoproteins, as they do not have

genes coding for enzymes that synthesize either UDP-N-

acetyl D-glucosamine or UDP-N-acetyl D-mannosamine.

Remarkable is the potential of both Mycoplasmas to

produce aerobactin from N-6-acetyl-N-6-hydroxylysine.

Aerobactin is a siderophore involved in iron uptake and vir-

ulence in bacteria. Both M. synoviae and M.

hyopneumoniae present the coding sequences that make

them able to produce the ceramide ciliatine from CMP-

ciliatine and 2-hydroxypropyl-phosphonate from phospho-

noacetaldehyde.

Comparison of some Mycoplasma species and
Ureaplasma urealyticus genomes: differential
enzyme coding sequences

The differential enzymes for carbohydrate metabo-

lism of Mollicutes analyzed here are: glucokinase (EC

2.7.1.2), phosphoglucomutase (EC 5.4.2.6), mannose-6-

phosphate-isomerase (EC 5.3.1.8), ATP citrate (pro-3S)

lyase (EC 4.1.3.6), pullulanase (EC 3.2.1.41), and oligo-

1,6-glucosidase (EC 3.2.1.10). Glucokinase, an essential

enzyme for the entry of D-glucose in the glycolytic path-

way, was found in all strains of M. hyopneumoniae, M.

pulmonis, M. mobile, M. mycoides, M. penetrans, M.

pneumoniae and U. urealyticus. These Mollicutes should

be able to use glucose as a carbon source for this metabolic

pathway. An alternative form of activating glucose for the

glycolysis pathway is through the activity of phospho-

glucomutase that catalyzes the reversible conversion of

glucose-1-phosphate to glucose-6-phosphate. The gene

that encodes this enzyme was found in some Mollicutes,

namely M. synoviae, M. mobile, M. pulmonis and M.

galysepticum, but not in M. hyopneumoniae (all analyzed

strains). Also, in these organisms the enzyme mannose-

6-phosphate isomerase catalyzes the interconversion of

fructose-6-phosphate (which can be also used in the

glycolytic pathway) and mannose-6-phosphate, which

could also be catabolized through a mannose pathway

(Pitkänen et al., 2004). As shown in Table 2, the gene that

encodes this enzyme was absent only in M. synoviae, M.

pneumoniae and M. galysepticum, which may mean that

these organisms need diversified carbon sources for sur-

vival in their respective hosts. The ATP citrate (pro-3S)

lyase is an enzyme that breaks down citrate into acetate and

oxaloacetate (Hoffmann et al., 1979). Analyzing the data,

M. synoviae is the only one amongst all Mollicutes ana-

lyzed in this study that presents the gene encoding this en-

zyme. For these intracellular pathogens, there must be the

alternative of citrate breakdown by the host, so they can use

oxaloacetate and acetate for ATP synthesis. Glucose is

found in the cell mainly as starch and/or glycogen polysac-

charides. Although the Mollicutes are simple organisms,

some of them, like M. hyopneumoniae (all analyzed

strains), M. mobile and M. pulmonis, have in their genome

the gene that encodes the enzyme pullulanase that hydroly-

ses (1,6)-α -D-glucosidic linkages in polysaccharides such

as amylopectin and glycogen, converting them into glu-

cose. This feature can be important in the host-pathogen in-

teraction. Pullulanase degrades glycogen to maltose, which

can be utilized by the enzyme oligo-1,6-glucosidase that

completes degradation to glucose (Doman-Pytka and

Bardowski, 2004). M. synoviae is thought to produce or-

ganic acids from maltose, which is further supported by the

finding of sequences encoding the enzyme oligo-1,6-glu-

cosidase, which is actually detected only in M. synoviae

and in M. pulmonis.

The gene encoding the enzyme myoinositol-

2-dehydrogenase (EC 1.1.1.18) was identified only in M.

hyopneumoniae (all analyzed strains). This enzyme cata-

lyzes myoinositol conversion to glyceraldehyde-3P, which

enters in the glycolytic pathway as an intermediate. As M.

hyopneumoniae has only this enzyme of a pathway that

comprises five others, this specific dehydrogenase should

act on another substrate or participate in another cellular

event such as oxidative stress. Eze et al. (1987) showed that

superoxide dismutase or parabenzoquinone inhibit the

myoinositol-2-dehydrogenase of Bacillus pumilus. They

discovered the involvement of this enzyme in the transfer-

ence of electrons and the production of the catalytic supe-

roxide intermediate (O2-) and/or the free radical hydroxyl

(OH.), which can be important for host-pathogen interac-

tions in Mollicutes. A successful pathogen must be able to

overcome or suppress this complex array of host defenses

mediated by reactive oxygen species (ROS). In fact, micro-

bial suppression of ROS-mediated defenses by secretion of

ROS-scavenging enzymes such as superoxide dismutase

and catalase, which convert ROS into less reactive species,
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has been extensively documented in both plant and animal

pathogens (San Mateo et al., 1998). Evidence is also

emerging that pathogens suppress ROS-mediated defenses

by non-enzymatic quenching of ROS. Mannitol has long

been recognized as a potent ROS quencher in vitro, and has

widely been used as a laboratory reagent to scavenge

hydroxyl radicals generated by the phagocyte respiratory

burst or by cell-free oxidant systems (Tauber and Babior,

1977). In vivo, increased mannitol production protects

Saccharomyces cerevisiae from oxidative injury (Chatur-

vedi et al., 1997). Furthermore, it was recently shown that

the human fungal pathogen Cryptococcus neoformans pro-

duces mannitol to quench neutrophil-generated ROS and

thereby suppress this animal defense (Chaturvedi et al.,

1996). The presence of the gene that encodes mannitol-

1-phosphate-5-dehydrogenase (EC 1.1.1.17) in M.

hyopneumoniae (all analyzed strains), M. mycoides, M.

pneumoniae and M. pulmonis is important to the conver-

sion of D-mannitol-1-phosphate into D-fructose-6-phos-

phate, by the reduction of NAD+ to NADH. This reaction

removes the reactive oxygen species of the cell by mannitol

degradation; supplies the glycolytic pathway with D-

fructose-6-phosphate, and also assists in the maintenance

of the cell redox balance by means of NADH production.

Amino acids vary in susceptibility to oxidative damage,

with methionine residues as the most vulnerable, followed

by cysteine and tyrosine (Levine et al., 1996). ROS readily

oxidizes methionine residues by two electrons to form

sulfoxide, which, in turn, can be reduced back to methio-

nine by the peptide methionine sulfoxide reductase (Pmsr -

EC 1.8.4.5). According to sequencing data, the gene that

encodes this enzyme was found in all Mollicutes except in

M. synoviae, M. penetrans and U. urealyticus, which is

consistent with its importance in the oxidative damage re-

sponse.

All nascent polypeptides in bacteria, chloroplasts and

mitochondria contain an N-terminal formyl-methionine

(Meinnel et al., 1993). In bacteria, peptide deformylase

(PDF - EC 3.5.1.88) removes the formyl group from the

majority of nascent polypeptides (Pei, 2001). Upon bacte-

rial infection or tissue damage, these N-formylated peptides

are released into the affected area, triggering a cascade of

immunologic responses and the migration of leukocytes to

the site of infection or injury. Of all Mollicutes analyzed in

this work, the gene encoding the peptide deformylase was

absent only in M. hyopneumoniae. This fact may imply a

differential mechanism of this Mollicute to escape the host

immune system.

Sialic acids are a large family of nine-carbon poly-

hydroxylated α-ketoacids that play a wide variety of roles

in nature (Angata and Varki, 2002). Most of them are deriv-

atives of the common core structures N-acetylneuraminate

acid or 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic

acid. As a result of their extracellular localization, the sialic

acids play important roles in mediating cellular recogni-

tion, adhesion processes (Varki, 1997) and recognition by

the lectins of the inflammatory and immune response path-

way mechanisms (Vestweber and Blanks, 1999). The pres-

ence of the gene that encodes the enzyme N-acetylneura-

minate lyase (EC 4.1.3.3) in M. synoviae is an evidence of a

potentially relevant mechanism of infection. N-acetylneu-

raminate lyase degrades N-acetylneuraminate acid to N-

acetyl-D-mannosamine and pyruvate, which can be used in

ATP synthesis. Moreover, this enzyme can be an evolution-

ary remnant, since it is involved in peptidoglycan metabo-

lism in bacteria, which is absent in Mycoplasma spp.

Mycoplasma species are unable to synthesize purine

and pyrimidine by de novo pathways. Therefore, salvage of

pre-existing nucleosides and bases is essential for their sur-

vival; they depend on pathways that use either nucleobases

or nucleosides to synthesize the respective nucleoside tri-

phosphates/deoxynucleoside triphosphates. Two paralogs

of deoxyguanosine kinase (EC 2.7.1.113) are found in M.

synoviae, M. pulmonis, M. pneumoniae and U. urealyticus.

This enzyme transfers a phosphate from ATP to deoxygua-

nosine, forming deoxyguanosine monophosphate (dGMP).

M. hyopneumoniae has an alternative deoxiguanosine

kinase activity, supplied by a 5’ ribonucleotide phospho-

hydrolase enzyme (EC 3.1.3.5), also found in M. pulmonis.

This ribonuclease is essential for Corynebacterium

glutamicum, which secretes it to acquire inorganic phos-

phate by using nucleotides as phosphorus source (Rittmann

et al., 2005).

M. hyopneumoniae cannot synthese tetrahydrofolate

from folate, since it lacks the enzymes dihydrofolate dehy-

drogenase (EC 1.5.1.3) and methylenehydrofolate dehy-

drogenase (Fol D - EC 1.5.1.5). Moreover, the absence of

thymidine synthase (EC 2.1.1.45), also absent in U.

urealyticum, accounts for a presumable dependence of M.

hyopneumoniae on this cofactor, that must be obtained

from the host.

Approximately 4%-5% of all reactions in the interme-

diary metabolism rely on coenzyme A as an essential cofac-

tor (Begley et al., 2001). So, the presence of enzymes like

pantetheine-phosphate adenylyltransferase (EC 2.7.7.3)

and holo-[acyl carrier protein] synthase (EC 2.7.8.7), which

work together in coenzyme A biosynthesis (Morris and

Izard, 2004), is essential for the metabolism of this cofac-

tor. Pantetheine-phosphate adenylyltransferase was found

only in M. synoviae, M. mobile, M. mycoides, M. penetrans

and M. pulmonis and not in the other Mollicutes, whereas

the holo-[acyl carrier protein] synthase was found in all

Mollicutes except M. hyopneumoniae (all analyzed

strains).

Concluding Remarks

The bioinformatics analysis of the M. synoviae and

M. hyopneumoniae (strains J and 7448) genome database

has made the description of their global metabolism possi-

ble. Also, comparative analyses of similar data from other
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Mollicutes enabled the identification of the main metabolic

points of divergence. The identification of metabolic path-

ways is likely to provide a better understanding of these or-

ganisms, as well as to help finding more effective

treatments for the respective diseases. M. synoviae and M.

hyopneumoniae have a simple genome and are able to per-

form only the most essential metabolic processes of energy

production, survival and host-pathogen interaction. The

data presented here may aid in experimental design to in-

vestigate Mycoplasma metabolism further. Taken all re-

sults together, M. synoviae and M. hyopneumoniae can

synthesize ATP via the glycolytic pathway or lactic fer-

mentation, but these two pathogens are unable to perform

the citrate and glyoxylate cycles, respiratory chain, gluco-

neogenesis, and pentose phosphate pathway reactions. M.

hyopneumoniae does not have the pathways for fatty acid

biosynthesis and degradation, but M. synoviae and M.

hyopneumoniae can produce cardiolipin and ceramide, the

only two membrane components identified in the genus.

Nucleotide biosynthesis is performed in these two patho-

gens only by salvage pathways and they have enzymes for

the synthesis of all aminoacyl-tRNAs, although M.

hyopneumoniae synthesizes no amino acid at all. Finally,

since our results were obtained by in silico study, experi-

mental validation of these data will be needed.
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