Composição química do solo e da água subterrânea em áreas adjacentes a aterros sanitários

RESUMO

O presente trabalho foi desenvolvido em áreas adjacentes a aterros sanitários e áreas controle, com o objetivo de: I) quantificar a concentração de nutrientes, metais pesados e outras variáveis abióticas do solo e da água subterrânea; II) determinar o conjunto de variáveis significativas e ordenar as áreas amostradas pelos seus vetores, na análise de componentes principais; e III) descrever em um gradiente espacial (0 a 500m) a variação dessas concentrações. Três parcelas de 25 x 500 m foram delimitadas e subdivididas em 30 subparcelas de 50 x 25 m, onde foram coletadas ao centro amostras de solo a 20 cm de profundidade, para quantificação dos elementos e parâmetros físicos citados. Os valores das concentrações destas variáveis abióticas estudadas foram maiores em subparcelas mais próximas dos aterros, reduzindo seus valores para subparcelas mais distantes. Valores médios das concentrações das variáveis abióticas foram maiores nas parcelas estabelecidas próximas aos aterros do que nas áreas controle. O pH e o alumínio, resultantes do aumento de matéria orgânica e óxidos na proximidade dos aterros, foram as variáveis determinantes para o agrupamento das subparcelas pelos autovetores.

Palavras-chave: aterro sanitário, contaminação, lixo doméstico

Chemical composition of soil and groundwater in areas adjacent to sanitary landfills

ABSTRACT

The present work was carried out in areas adjacent to sanitary landfills and control areas, aiming: I) to quantify nutrients, heavy metals and abiotic variables concentration in soil and groundwater; II) to determine the significant variables set and to schedule the sampled areas by vectors, through principal component analysis; and III) to describe in a spatial gradient (from 0 to 500 m) the variation of these concentrations. Three plots (25x500 m) were located and subdivided in 30 subplots (50x25 m), where soil samples were collected in a central point, at 20 cm of depth, in order to quantify chemical and physical parameters. The concentrations of the studied abiotic variables were higher in the subplots nearby the landfills, reducing the values towards more distant subplots. Average values of the abiotic variables were higher in plots nearby the landfills than in control areas. Aluminum and pH, resulting from the increase in organic matter and oxides nearby the landfills, were the determinant variables for the subplots grouping by vectors.

Key words: sanitary landfill, contamination, domestic waste
Composição química do solo e da água subterrânea em áreas adjacentes a aterros sanitários

INTRODUÇÃO

A poluição do solo e de águas superficiais e subterrâneas provocada por resíduos sólidos urbanos é motivo de preocupação em todo o mundo, principalmente nos países industrializados, tendo em vista o reconhecido potencial poluidor e o grande volume de resíduos gerados diariamente (Costa & Costa, 2004). A possibilidade de contaminação ambiental, associada à necessidade de grandes áreas para a disposição e tratamento, tornou a solução do problema do lixo urbano um dos mais sérios desafios para as administrações públicas.

Os efeitos da poluição ambiental são muito mais complexos e difusos do que se poderia avaliar de início; suas consequências, além de disseminadas, podem ser também cumulativas e crônicas, tornando mais complexa a ação de despoluir (Castagnino, 2006). Uma fonte poluidora exerce efeitos de diferentes dimensões sobre a biosfera e a biota, atingindo, consequentemente, o solo e as águas (Costa & Costa, 2004).

Os resíduos sólidos são considerados a expressão mais visível e concreta dos riscos ambientais, ocupando um importante papel na estrutura de saneamento de uma comunidade urbana e, consequentemente, nos aspectos relacionados à saúde pública. Além das consequências para a saúde comunitária, deve-se considerar ainda o impacto que a disposição inadequada desses resíduos provoca no solo, nos recursos hídricos e consequentemente na vegetação (Brasil, 2002).

Estes resultados se devem principalmente a falta de manejo e manutenção dos aterros a partir de sua implementação (Yen & Scanlon, 1975), somados com a alta porosidade, permeabilidade, e drenagem, típicas de solos arenosos ou intemperizados, a exemplo dos solos do Cerrado (Adamoli et al., 1986; Juhasz et al., 2007).

Neste sentido, os objetivos desse trabalho foram: i) quantificar as concentrações de nutrientes, metais pesados e variáveis abióticas do solo e da água subterrânea em áreas de aterros sanitários; ii) descrever ao longo de um gradiente no aterro a variação dessas concentrações; iii) quantificar a importância relativa de cada variável analisada; e iv) comparar as áreas estudadas com áreas controle adjacentes.

MATERIAIS E MÉTODOS

Duas áreas próximas a depósitos de resíduos domiciliares foram escolhidas por estarem cobertas com vegetação nativa: uma no Parque Nacional de Brasília, a 15 m do aterro do Jockey Club de Brasília (15°45'56.56"S e 47°59'55.25"W SAD 69), denominada BSB; e outra a 15 m do aterro Sanitário de Goiânia (16°39'09.77"S e 49°23'37.08"W SAD 69), denominada GYN, localizada na Chácara São Joaquim. Para a amostragem controle outras duas áreas foram estabelecidas: uma no próprio Parque Nacional de Brasília, distante 15 km do aterro (BSB – Controle: 15°38'11.45"S e 48°01'55.61"W SAD 69); e outra em Goiânia na área do Campus II da Universidade Católica de Goiás (GYN – Controle: 16°37'48.29"S e 49°12'46.48"W SAD 69), distante também aproximadamente 15 km do aterro.

As áreas escolhidas situam-se na região Centro-Oeste com o clima Aw, em Brasília, e Cwa, em Goiânia, de acordo com a classificação de Köppen. A pluviosidade anual e temperatura média anual são de 1.440 mm e 22°C, respectivamente para as duas áreas. Duas estações são definidas para estes climas: úmida e chuvosa, de outubro a março, e seca, de abril a setembro.

As altitudes das áreas de amostragem foram: BSB 797 m; BSB – Controle 838 m; GYN 1115 m e GYN – Controle 1150 m. As declividades das parcelas nas áreas amostradas não ultrapassam 15%, correspondendo a um relevo ondulado.

Os solos nas regiões estudadas tanto em Goiânia, como em Brasília foram classificados como Latossolo Vermelho, segundo o Sistema Brasileiro de Classificação dos Solos (Santos et al., 2003; Embrapa, 2006).

A análise granulométrica das duas áreas estabelecidas apresentou valores aproximados de 380 g kg\(^{-1}\) para argila, 182 g kg\(^{-1}\) para silte e 438 g kg\(^{-1}\) para areia, com diâmetro médio ponderado de 2,81 mm, apresentando alta taxa de infiltração hídrica, cerca de 90 cm h\(^{-1}\) (Santana & Imaña-Encinas, 2004).

As quatro áreas amostradas estão cobertas com vegetação típica de Cerrado, conforme classificação fitofisionômica de Eiten (2001). Os critérios para escolha das áreas controle foram: i) o mesmo tipo de solo, e ii) a drenagem arbórea da vegetação nativa semelhante a das áreas próximas aos depósitos de resíduos domiciliares.

Nos depósitos de resíduos domiciliares estudados e nas áreas controle foram estabelecidas três parcelas de 25 x 500 m de comprimento, que foram divididas em dez subparcelas de 25 x 50 m, onde foram coletadas os dados de vegetação (Figura 1). O espaçamento entre as parcelas foi de 75 m. Cada subparcela foi denomina da com um número, e o mesmo procedimento foi realizado para a área controle onde a parte inicial das parcelas foi determinada de forma aleatória.

Os pontos de amostragem de solo e de água subterrânea seguiram a metodologia proposta por Carter (1993), mostrada na Figura 2.

Todos os materiais utilizados para a coleta de amostras e seu correspondente acondicionamento foram de polietileno, previamente submersos em solução de ácido nítrico a 30 \%
por 24 horas, para eliminação de metais interferentes (Voegborlo et al., 1999).

Para a coleta de amostras de solo, foram utilizados instrumentos de jardinagem de teflon. Para o armazenamento do material foram utilizadas caixas de polietileno providas de tampa (28 x 40 x 12 cm).

Em cada um dos pontos delimitados foi coletada uma amostra de solo de aproximadamente 500 g, até 20 cm de profundidade, seguindo a metodologia de Carter (1993). Todas as amostras de solo foram secas a 110ºC e peneiradas (< 2 mm). A água subterrânea foi coletada por um tudo de PVC com uma fina mangueira em seu interior (Figura 3), conectado no final por um filtro semipermeável. Através de uma bomba de sucção foi criado um potencial negativo de -10 kPa (vácuo na mangueira), fazendo com que a água subterrânea e lixiviada do solo subsissem, sendo coletados 200 ml em cada amostra. O método desenvolvido seguiu os pressupostos de condutividade hidráulica em solos (Bacchi & Reichardt, 1993; Campos et al., 2003).

As coletas de solo e da água subterrânea foram realizadas de novembro de 2004 a dezembro de 2005, em dias sem precipitações maiores que 0,9mm, ou anteriormente ocorridas (Reichardt et al., 1995). No total foram 120 pontos de amostragem nas áreas estudadas, 60 em áreas próximas aos aterros e 60 em áreas controle.

A concentração nitrogênio total (Nt) foi determinada com um analisador CNS (Ferreras et al., 2001). A partir da dissolução em HNO_3 e HClO_4, as concentrações totais de alumínio, cálcio, potássio, magnésio e zinco do solo foram determinadas por um espectrômetro; P por um espectroscópio (ICP-AES)(Carneiro et al., 2001). Para os metais disponíveis no solo como cobre, cádmio, cromo, ferro, mercúrio, manganês e chumbo foram utilizados espectrômetro de emissão atômica com fonte de plasma (ICP/AES) (Fontaneli et al., 2002). A medição do pH foi realizada em medidor de pH digital (Digimed, modelo DMPH-2) combinado com um eletrodo de vidro, e a matéria orgânica (MO – carbono oxidável) pelo método de Kjeldahl-Walkley-Black (Isoldi et al., 2003).

A análise de componentes principais (ACP) foi realizada para reduzir as 16 variáveis amostradas nas parcelas, baseada na matriz de correlação dessas variáveis, com o uso do programa PC-ORD 4.0 (McCune & Mefford, 1999).

Ajustes lineares dos pontos de dispersão entre as concentrações químicas e as distâncias das subparcelas foram efectuados para o cálculo do coeficiente de determinação (R^2), pelo programa Statistic 5.1 (StatSoft, 1997).

RESULTADOS E DISCUSSÃO

As Tabelas de 1 a 4 se evidenciaram que os maiores valores das concentrações dos elementos estudados foram nas subparcelas próximas aos aterros (de 0 a 100), mostrando a
Tabela 1. Valores médios (desvio padrão) das variáveis ambientais no solo em subparcelas do aterro do Jockey Club de Brasilia e no controle

<table>
<thead>
<tr>
<th>Variável Ambiental</th>
<th>Distância do aterro (m)</th>
<th>Média</th>
<th>Controle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH em H2O</td>
<td>0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500</td>
<td>5,4</td>
<td>4,1</td>
</tr>
<tr>
<td>MO (%)</td>
<td>4,18 5,12 3,56 3,71 3,14 3,12 3,30 3,20 2,96 2,93</td>
<td>3,52</td>
<td>2,70</td>
</tr>
<tr>
<td>Nt (%)</td>
<td>±0,10 ±7,30 ±4,26 ±15,9 ±14,51 ±9,17 ±1,49 ±3,25 ±5,36 ±4,12</td>
<td>0,63</td>
<td>0,05</td>
</tr>
<tr>
<td>P (mg/100g)</td>
<td>15,86 13,94 13,21 10,07 10,15 9,65 5,32 4,55 4,12 5,17</td>
<td>9,2</td>
<td>1,2</td>
</tr>
<tr>
<td>Ca (mmol/kg)</td>
<td>±0,87 ±0,97 ±1,15 ±1,23 ±0,87 ±1,45 ±1,16 ±1,49 ±1,23 ±0,79</td>
<td>4,78</td>
<td>2,5</td>
</tr>
<tr>
<td>Mg (mmol/kg)</td>
<td>±1,06 ±1,06 ±1,25 ±0,90 ±1,45 ±1,13 ±0,48 ±0,53 ±0,48 ±1,09</td>
<td>7,43</td>
<td>4,33</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±0,54 ±0,57 ±0,69 ±0,65 ±1,00 ±0,98 ±1,045 ±0,95 ±0,45 ±0,45</td>
<td>1,6</td>
<td>0,57</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>0,45 0,45 0,46 0,51 0,18 0,35 0,33 0,35 0,19 0,25</td>
<td>0,05</td>
<td>0,02</td>
</tr>
<tr>
<td>Cd (mg/L)</td>
<td>±0,01 ±0,09 ±0,07 ±0,06 ±0,07 ±0,01 ±0,01 ±0,06 ±0,09 ±0,06</td>
<td>0,12</td>
<td>0,04</td>
</tr>
<tr>
<td>Mn (mg/L)</td>
<td>±0,01 ±0,09 ±1,05 ±1,01 1,05 1,01 1,06 1,11 1,04 1,12</td>
<td>1,39</td>
<td>0,8</td>
</tr>
<tr>
<td>Zn (mg/L)</td>
<td>±0,51 ±0,29 ±0,99 ±0,78 ±1,05 ±0,19 ±0,21 ±0,33 ±0,41 ±0,19</td>
<td>4,72</td>
<td>2,94</td>
</tr>
<tr>
<td>Cr (mg/L)</td>
<td>±0,09 ±1,15 ±0,47 ±0,54 ±0,54 ±0,57 ±0,47 ±1,00 ±0,89 ±0,57</td>
<td>2,35</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Tabela 2. Valores médios (desvio padrão) das variáveis ambientais no solo em subparcelas do aterro sanitário de Goiânia e no controle

<table>
<thead>
<tr>
<th>Variável Ambiental</th>
<th>Distância do aterro (m)</th>
<th>Média</th>
<th>Controle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH em H2O</td>
<td>0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500</td>
<td>5,3</td>
<td>3,7</td>
</tr>
<tr>
<td>MO (%)</td>
<td>5,42 4,23 3,01 3,31 2,96 3,17 3,04 3,04 3,31 2,71</td>
<td>3,42</td>
<td>1,9</td>
</tr>
<tr>
<td>Nt (%)</td>
<td>±0,12 ±0,34 ±0,37 ±0,09 ±0,15 ±0,06 ±0,18 ±0,22 ±0,11 ±0,19</td>
<td>0,67</td>
<td>0,04</td>
</tr>
<tr>
<td>P (mg/100g)</td>
<td>8,68 8,01 6,14 6,21 6,13 5,14 5,04 3,69 3,57 3,01</td>
<td>5,58</td>
<td>0,27</td>
</tr>
<tr>
<td>Ca (mmol/kg)</td>
<td>13,21 13,21 12,45 9,66 9,14 6,18 6,29 6,18 3,01 4,17</td>
<td>8,35</td>
<td>1,59</td>
</tr>
<tr>
<td>Mg (mmol/kg)</td>
<td>±0,75 ±1,15 ±2,49 ±2,49 ±1,15 ±1,35 ±1,58 ±1,48 ±1,02 ±0,64 ±0,98 ±0,77</td>
<td>4,24</td>
<td>2,21</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±0,52 ±1,05 ±0,11 ±0,29 ±0,21 ±0,10 ±0,15 ±0,77 ±0,41 ±0,76 ±0,73</td>
<td>12,54</td>
<td>4,59</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±0,19 ±0,21 ±0,17 ±0,21 ±1,15 ±1,19 ±1,49 ±0,19 ±1,16 ±0,21</td>
<td>3,18</td>
<td>7,49</td>
</tr>
<tr>
<td>Cd (mg/L)</td>
<td>±0,24 ±0,24 ±0,24 ±0,24 ±0,24 ±0,24 ±0,24 ±0,24 ±0,24 ±0,24</td>
<td>0,36</td>
<td>0,04</td>
</tr>
<tr>
<td>Mn (mg/L)</td>
<td>±0,87 ±0,77 ±0,18 ±0,18 ±0,77 ±0,18 ±0,18 ±0,77 ±0,18 ±0,77</td>
<td>0,08</td>
<td>0,03</td>
</tr>
<tr>
<td>Zn (mg/L)</td>
<td>±0,09 ±0,09 ±0,09 ±0,09 ±0,09 ±0,09 ±0,09 ±0,09 ±0,09 ±0,09</td>
<td>5,94</td>
<td>4,09</td>
</tr>
<tr>
<td>Cr (mg/L)</td>
<td>±0,01 ±0,01 ±0,01 ±0,01 ±0,01 ±0,01 ±0,01 ±0,01 ±0,01 ±0,01</td>
<td>1,45</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Tabela 3. Valores médios (±desvio padrão) das variáveis ambientais na água subterrânea em subparcelas do aterro do Jockey Club de Brasília e no controle

<table>
<thead>
<tr>
<th>Variável Ambiental</th>
<th>Distância do aterro (m)</th>
<th>Média</th>
<th>Controle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH em H2O</td>
<td>0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO (%)</td>
<td>±0,50 ±0,61 ±0,22 ±0,15 ±0,32 ±0,33 ±0,24 ±0,51 ±0,4 ±0,275</td>
<td>6,2</td>
<td>5,1</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±6,90 ±4,71 ±4,52 ±3,51 ±2,27 ±2,91 ±2,82 ±2,89 ±2,70 ±2,75</td>
<td>3,70</td>
<td>3,32</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±1,92 ±1,12 ±2,26 ±1,01 ±3,65 ±7,45 ±4,58 ±4,16 ±4,26 ±4,19</td>
<td>2,33</td>
<td>0,22</td>
</tr>
<tr>
<td>Zn (mg/L)</td>
<td>±4,52 ±3,12 ±3,25 ±1,89 ±1,68 ±1,65 ±1,45 ±1,27 ±1,12</td>
<td>11,02</td>
<td>2,11</td>
</tr>
<tr>
<td>Fe (mg/L)</td>
<td>±1,69 ±0,93 ±0,26 ±0,75 ±0,49 ±0,30 ±0,33 ±0,48 ±0,25</td>
<td>11,12</td>
<td>3,11</td>
</tr>
<tr>
<td>MO (%)</td>
<td>±0,22 ±0,3 ±0,59 ±0,4,84 ±0,96 ±0,39 ±0,31 ±0,27 ±0,19 0,98</td>
<td>13,72</td>
<td>7,98</td>
</tr>
<tr>
<td>Valores médios (±desvio padrão) das variáveis ambientais na água subterrânea em subparcelas do aterro sanitário de Goiânia e no controle</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabela 4. Valores médios (±desvio padrão) das variáveis ambientais na água subterrânea em subparcelas do aterro sanitário de Goiânia e no controle

<table>
<thead>
<tr>
<th>Variável Ambiental</th>
<th>Distância do aterro (m)</th>
<th>Média</th>
<th>Controle</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH em H2O</td>
<td>0-50 51-100 101-150 151-200 201-250 251-300 301-350 351-400 401-450 451-500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MO (%)</td>
<td>±1,95 ±2,02 ±1,74 ±1,51 ±1,27 ±1,05 ±0,83 ±0,61 ±0,40 ±0,20</td>
<td>6,7</td>
<td>4,8</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±1,25 ±1,64 ±0,45 ±0,97 ±1,11 ±0,54 ±0,99 ±0,78 ±0,73</td>
<td>3,73</td>
<td>14,78</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±1,42 ±0,89 ±2,56 ±5,48 ±9,15 ±2,65 ±4,26 ±4,36 ±4,32</td>
<td>19,36</td>
<td>5,27</td>
</tr>
<tr>
<td>Ca (mmol/kg)</td>
<td>±0,99 ±0,52 ±0,55 ±0,62 ±1,11 ±0,75 ±0,49 ±0,52 ±0,60 ±0,71</td>
<td>0,47</td>
<td>0,4</td>
</tr>
<tr>
<td>Mg (mmol/kg)</td>
<td>±0,13 ±0,12 ±0,11 ±0,09 ±0,01 ±0,06 ±0,09 ±0,11 ±0,02 ±0,06</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Mn (mg/L)</td>
<td>±0,51 ±0,52 ±0,51 ±0,52 ±0,52 ±0,52 ±0,52 ±0,52 ±0,52 ±0,52</td>
<td>0,62</td>
<td>0,19</td>
</tr>
<tr>
<td>Fe (mg/L)</td>
<td>±1,11 ±1,15 ±1,15 ±1,15 ±1,15 ±1,15 ±1,15 ±1,15 ±1,15 ±1,15</td>
<td>0,11</td>
<td>0,09</td>
</tr>
<tr>
<td>MO (%)</td>
<td>±0,01 ±0,04 ±0,06 ±0,09 ±0,05 ±0,01 ±0,12 ±0,02 ±0,02 ±0,01</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±0,04 ±0,03 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Cd (mg/L)</td>
<td>±0,04 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05 ±0,05</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Zn (mg/L)</td>
<td>±0,68 ±0,63 ±0,65 ±0,61 ±0,59 ±0,59 ±0,58 ±0,57 ±0,57</td>
<td>0,62</td>
<td>0,19</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±0,24 ±0,09 ±0,08 ±0,08 ±0,08 ±0,08 ±0,08 ±0,08 ±0,08 ±0,08</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±0,15 ±0,15 ±0,15 ±0,15 ±0,15 ±0,15 ±0,15 ±0,15 ±0,15 ±0,15</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Ca (mmol/kg)</td>
<td>±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Mg (mmol/kg)</td>
<td>±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46 ±0,46</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Mn (mg/L)</td>
<td>±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Fe (mg/L)</td>
<td>±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51 ±0,51</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>MO (%)</td>
<td>±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04 ±0,04</td>
<td>0,08</td>
<td>0,06</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±1,005 ±0,207 ±0,087 ±0,082 ±0,082 ±0,082 ±0,082 ±0,082 ±0,082 ±0,082</td>
<td>0,38</td>
<td>0,24</td>
</tr>
<tr>
<td>Cu (mg/L)</td>
<td>±0,05 ±0,21 ±0,07 ±0,08 ±0,11 ±0,15 ±0,01 ±0,07 ±0,10 ±0,12</td>
<td>0,38</td>
<td>0,24</td>
</tr>
<tr>
<td>Pb (mg/L)</td>
<td>±0,27 ±0,22 ±0,33 ±0,15 ±0,09 ±0,04 ±0,05 ±0,07 ±0,11 ±0,01</td>
<td>0,53</td>
<td>0,04</td>
</tr>
<tr>
<td>Cd (mg/L)</td>
<td>±0,19 ±0,09 ±0,15 ±0,03 ±0,03 ±0,04 ±0,09 ±0,08 ±0,05 ±0,05</td>
<td>0,08</td>
<td>0,04</td>
</tr>
<tr>
<td>Mn (mg/L)</td>
<td>±0,03 ±0,05 ±0,207 ±0,01 ±0,01 ±0,04 ±0,01 ±0,03 ±0,03 ±0,03</td>
<td>0,58</td>
<td>2,53</td>
</tr>
<tr>
<td>Zn (mg/L)</td>
<td>±1,13 ±1,61 ±1,11 ±1,61 ±1,11 ±1,61 ±1,11 ±1,61 ±1,61 ±1,61</td>
<td>4,14</td>
<td>4,59</td>
</tr>
<tr>
<td>Cr (mg/L)</td>
<td>±0,18 ±0,51 ±0,47 ±0,26 ±0,16 ±0,14 ±0,21 ±0,19 ±0,15 ±0,10</td>
<td>0,48</td>
<td>0,24</td>
</tr>
</tbody>
</table>

sua influência nas concentrações destes elementos. Estes resultados foram também comprovados pelas maiores médias obtidas nestas parcelas em relação às áreas controle. Segundo Celere et al. (2007), a propagação dos resíduos sólidos em seus detritos ocorrem não só de maneira vertical, como também de maneira horizontal, corroborando os dados deste trabalho.

O aumento de elementos como nitrogênio, fósforo, potássio e cálcio foram resultantes do acréscimo de matéria orgânica presente nos resíduos sólidos, principalmente de restos de alimentos. No solo e na água subterrânea estes elementos foram principalmente encontrados na forma de óxidos (NO_3^-; NO_2^-; PO_4^{3-}) que atraem H^+ e íons K^+ e Ca^{2+} que formam...
óxidos com OH, deixando-os menos ácidos (pH e' 7), conforme observado nas Tabelas 1 a 4.

Os elementos Fe$^{2+}$, Mg$^{2+}$, Hg$^{2+}$, Cu$^{2+}$, Pb$^{2+}$, Cd$^{2+}$, Mn$^{2+}$, Zn$^{2+}$ e Cr$^{2+}$ tiveram como principais fontes as embalagens de alimentos (latas, principalmente), resíduos hospitalares (por exemplo, seringa), equipamentos de maquinaria em geral (por exemplo, televisão velha, pedaços de automóveis e computadores) e sobras de construção civil, também formando predominantemente óxidos (Fe$_2$O$_3$, MgCO$_3$, Cu$_2$O, PbO, MnO$_2$, ZnO, K$_2$Cr$_2$O$_7$), aumentado assim o valor de pH, concordando com dados obtidos por Pavan (1996).

Outro fator a ser levado em consideração, é que os citados óxidos não são solúveis nas condições ambientais, evitando uma lixiviação a maiores profundidades (>3m), indepen-

Figura 4. Análise de componentes principais das variáveis abióticas significativas, representativas das 60 subparcelas de solo avaliadas, sendo 30 em áreas próximas aos aterros (A) e 30 em áreas controle (C).

(i) Áreas estudadas em Brasília e (ii) Áreas estudadas em Goiânia. (a) Círculo de autovetores das variáveis; (b) Plano de dispersão dos autovetores das subparcelas.

Figure 4. Principal Component Analysis between significant abiotic variables, representative of the 60 soil subplots, 30 close to the landfills (A) and 30 in the control areas (C).

(i) Areas studied in Brasilia. (ii) Areas studied in Goiana. (a) Circle of the eigenvalues of variables; (b) Eigenvalues dispersion of the subplots.
Composição química do solo e da água subterrânea em áreas adjacentes a aterros sanitários

dentemente da textura do solo (Pavan, 1996), sendo encontrados nas amostras de solo e de águas mais superficiais. Apenas Al\(^{3+}\) não obteve um padrão de redução de sua concentração a partir do aterro para áreas distantes. Em áreas de Cerrado, de pH ácido (pH < 7), o alumínio se apresenta principalmente como Al\(_3\)PO\(_4\), que é solúvel e lixiviado para regiões mais profundas (Pavan, 1996; Capelo Neto & Castro, 2005; Campos et al., 2006).

Na análise de componentes principais (Figuras 4 e 5), o conjunto de elementos significativos, ou seja, cujas variações acumuladas representaram cerca de 70% do total da variação foram: para o solo - manganês, zinco, ferro e MO = matéria orgânica) na análise de componentes principais com as distâncias das subparcelas. (R\(^2\) = coeficiente de ajuste dos pontos de cada variável)

Figure 6. Relationship between the average concentrations of the selected chemical variables (pH, Mn, Al, Zn, Fe and MO = organic matter) in the Principal components analysis with the subplots distances. (R\(^2\) = Adjust coefficient of variable points)}
Tanto para o solo quanto para a água subterrânea, observou-se a formação de dois grupos significativos: i) das subparcelas próximas aos aterros (A01 a A15); e ii) das subparcelas controle (C01 a C30). Esta divisão foi determinada, principalmente, pelo vetor alumínio, que foi o responsável pelas áreas controle, e o pH, que concentrou as subparcelas próximas dos aterros. Isto mostrou a importância dos óxidos formados pela presença de matéria orgânica e outros cátions, aumentando o pH (Gomes et al., 2004), próximos aos aterros, e a acidez, representada pela presença de Al$^{3+}$, nas amostras coletadas nas áreas controle.

Figura 7. Relação das concentrações médias dos elementos químicos selecionados (Nt = nitrogênio total, cálcio, cobre, potássio e magnésio) na análise de componentes principais, com as distâncias das subparcelas. (R^2 = coeficiente de ajuste dos pontos de cada variável)

Figure 7. Relationship between mean concentrations of the selected chemical elements (Nt = total nitrogen, Ca, Cu, K and Mg) in the Principal components analysis with the subplots distances. (R^2 = Adjust coefficient of variables points)
CONCLUSÕES

Os mais altos valores das variáveis abióticas estudadas, tanto para o solo, quanto para a água subterrânea, foram encontrados nas subparcelas mais próximas dos aterros, reduzindo seus valores com o afastamento.

Os valores médios das variáveis abióticas foram maiores nas parcelas estabelecidas próximas aos aterros do que nas áreas controle.

O pH e o alumínio foram as variáveis determinantes para o agrupamento das subparcelas pelos autovetores, em consequência do aumento de matéria orgânica e dos óxidos na proximidade dos aterros.

AGRADECIMENTOS

Ao ICMBIO/Parque Nacional de Brasília e a Prefeitura de Goiânia, pela logística e licença para realização do trabalho.

LITERATURA CITADA

